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Abstract

This is the Final Report of a three year project to "Develop, Apply, and E-
valuate Wavelet Technology" conducted under ARPA Order #7092, AFOSR
Contract #F49620-89-C-0125.

The Final Report has two parts. This part contains a summary technical
report, and appendices that describe outreach activities to the scientific,
commercial, and governmental communities under the program.

The second part of the Final Report is a separately bound monograph
titled The scalable structuire of information: An essay on wavelet technology
and its application to bandwidth management. It is a semi-technical presen-
tation for people who want to know what wavelets are, how they are related
to conventional mathematical tools, and what they are good for. The Essay
describes the foundations of wavelet technology; provides an informal intro-
duction (i.e., many figures; no proofs) to the many types of compactly sup-
ported wavelets; and describes their application in bandwidth management.
The applications emphasize compression, channel coding. and numerical so-
lution of partial differential equations.

Keywords: Audio compression; Bandwidth compression; Biorthogonal wave-
lets; Channel coding; Complex wavelets; Connection coefficients; Discrete
functions; Formal derivatives of wavelets; Higher rank wavelets; Image com-
pression; Numerical solution of partial differential equations; Orthogonal
wavelets; Scaling function; Transient signal analysis; Wavelet bases; Wavelet-
Capacitance matrix; Wavelet-Galerkin method; Wavelet matrices; Wavelet
matrix expansion.
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Executive Summary

This is the Final Report of a three year project to "Develop, Apply, and E-
valuate Wavelet Technology" conducted under ARPA Order #7092, AFOSR
Contract #F49620-89-C-0125. The Final Report has two parts. This part
contains a summary technical report, and appendices that describe outreach
activities to the scientific, commercial, and governmental communities under
the program.

The second part of the Final Report is a separately bound monograph
titled The scalable structuire of information: An essay on wavelet technology
and its application to bandwidth management. It is a semi-technical presen-
tation for people who want to know what wavelets are, how they are related
to conventional mathematical tools, and what they are good for. The Essay
describes the foundations of wavelet technology; provides an informal intro-
duction (i.e., many figures; no proofs) to the many types of compactly sup-
ported wavelets; and describes their application in bandwidth management.
The applications emphasize compression, channel coding. and numerical so-
lution of partial differential equations.
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1 Report Summary

In our work on this contract, we completed work in three major areas: the
mathematical foundations of wavelet theory, and applications of wavelets to
signal processing and partial differential equations. In this final technical
report we summarize the results of our investigations in these three areas
and report on directions for further research.

In the area of mathematical foundations, we have investigated both dis-
crete and continuous aspects of wavelet theory. The original wavelets of
Daubechies [2] and Mallat [25] correspond to 2-band filter banks; they split a
signal (or subspace of functions) into two parts. We have developed [17, 14] a
far-reaching generalization of the wavelet concept ("'higher rank wavelets")
to the case where a signal is split into m different pieces or frequency bands1 .
This generalization encompasses block transforms such as the FFT as well
as overlapped transforms, all within a multiresolution framework. We have
carried out much of the detail work necessary to implement this generaliza-
tion (cf. [12, 13]). We have also developed two distinct parametrizations
of the "rank 2" wavelets, which prove useful in adaptive choice of a wavelet
for engineering applications. In the continuous realm, we have investigated
wavelet expansions of function spaces - characterizing those wavelets which
yield orthonormal bases of L2(R) and describing the local behavior of wavelet
functions, establishing connections with classical analysis.

In our investigations of the applications of wavelets to signal processing,
we have had two major foci: image compression and computational algo-
rithms. We have developed a wavelet-based still image compression system
[56] with performance superior to that of traditional DCT-based algorithms.
Gopinath and Burrus [8] have studied computation with the wavelet trans-
form, and Gopinath, Burrus, and Lawton [11] have investigated the approx-
imation of linear translation-invariant operators with the wavelet-Galerkin
operator. Furthermore, we have investigated connections between the wave-
let and Fourier transforms and described the characteristics of some funda-
mental signals in wavelet phase space.

We have applied wavelet based numerical methods to the solution of par-
tial differential equations [6, 18, 19, 33, 34, 35, 54]. Specifically, we compare
the Wavelet-Galerkin method to standard numerical methods for the numer-

here m is an integer greater than or equal to two.

0
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ical solution of

"* The Euler equations of a two-dimensional, incompressible fluid in a
periodic domain.

"* The Biharmonic Helmholtz equation and the Reduced Wave equation
in nonseparable, two-dimensional geometry.

"* The Euler and Navier-Stokes equations in nonseparable, two-dimensional
geometry.

The wavelet methods have significant advantages with regard to stability,
accuracy, and rate of convergence.

2 Mathematical Foundations

2.1 Higher Rank Wavelets

We have generalized the two-band wavelets of Daubechies and Mallat to the
rn-band (or rank m) case, yielding a large family of transforms which include
block transforms such as the FFT, as well as overlapping generalizations of
these m x m block transforms. Furthermore, these "higher rank wavelets" are
well-suited to use in a multiresolution analysis tree. They have applications
in a broad range of areas from image and audio compression to interference
cancellation and transient detection.

A wavelet matrix is an rn x mg matrix A with complex entries as satisfying
aka" m6b•6jo, and (1)

k

° = m' 0 . (2)
k

The first row a2 of the wavelet matrix is called the lowpass row since it
corresponds to a lowpass filter, and the other rows are the wavelet or highpass
rows. The genus g is the number of m x m blocks which make up the wavelet
matrix. The conditions (1)-(2) can be rephrased in the language of polyphase
factorizations of filter banks; for details see [17].

The wavelet matrices of genus 1 play a special role; these rn x m matrices
are called Haar wavelet matrices; they include a wide range of block trans-
forms such as the FFT, Discrete Cosine Transform, and Hadamard-Walsh

S
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transform. Furthermore, each wavelet matrix (of arbitrary genus) has such
a Haar matrix associated with it, by

HA= (h) , h,=' Fa,+i,.. (3)

This Haar matrix determines the frequency partitioning properties of the
corresponding wavelet filter bank.

Pollen [27] at Aware has carried out a parametrization of the rank 2
wavelets, describing a genus g wavelet by means of g - 1 angular parameters.
We are currently working on the generalization of this result to arbitrary
rank.

We have observed [17] that the orthogonality condition (1) implies that a
wavelet system provides an orthonormal representation for discrete functions:

Theorem 2.1 Given a signal f(n) and an m x mg wavelet system as, then
f has a unique wavelet expansion

n-1 oo

f(n) = E el ca.,.

8=0 1=-oo

where 1

m n

Higher Rank Daubechies Wavelets

One of the first questions to arise in the theory of higher rank wavelets
is "what is the generalization of Daubechies' regular compactly supported
wavelets to the rank m setting?" Regularity is important because regular
filters "pass through" polynomial information and because regular filters lead
to regular (smooth) scaling functions. Given an m-band FIR wavelet filter
(a0, a1, ... , aN) with frequency response

A(e1 0) = ake
k

we say that the filter is regular of order N iff the frequency response A is
flat (has a zero) of order N + 1 at the m-th roots of unity w = 27i/m.
There are numerous equivalent formulations of regularity; they are discussed



Frequency response for regular wavelet filters, N=1, m=2,3,4
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Figure 1: Frequency response for regular wavelet filters: N 1 1, m = 2,3,4

in [13, 40]. We have constructed rank m wavelet lowpass filters with N-th
order regularity and derived an explicit formula for the "scaling coefficients"
(i.e. lowpass filter taps). The key is to begin with the Haar lowpass filter
h =(ao = 1, a, = 1, ... , a,.,- = 1) and form

A(ewi) = HN(ei,)Q(etw)

By examining the square modulus of A and enforcing the orthogonality con-
dition (1), we find an explicit formula for IQ(ew)12 and thus A; the details
appear in [13]. Figure 1 displays the frequency responses of the N = 1 regular
wavelet filters for m = 2,3,4.

Having derived the rank m wavelet lowpass filter using the above con-
struction, we are then able to construct a full rank m wavelet matrix, given
the lowpass filter and the desired characteristic Haar matrix. This construc-
tion is described in [17] and [12]; it amounts to solving a set of m-l-g-1 linear
equations for a wavelet matrix of rank m and genus g. Furthermore, given a
valid wavelet matrix with regularity of order N, we are able to construct rank
m wavelet tight frames for L2(R). S-cifically, the rank m scaling function
is the solution of the equation

(p(x) ak= (mx - k); (4)
k



Basis elements phi, psij, psi_2, psL3 with regularity N=3
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Figure 2: Basis elements V, jkl k2, 03 with regularity N =3

if the scaling coefficient set has regularity of order N, then the resulting
scaling function will have AN continuous derivatives, for some constant A
indepcndent of N. We can then construct the m - 1 wavelet functions by

k

The collection of functions

form a tight frame and in most cases an orthonormal basis for L 2 (R); details
are to be found in [14, 20]. Figure 2 shows the functions ?k for a
rank 4 wavelet system with regularity order N = 3.

We have discovered [16] that when using a regular wavelet filter (of ar-
bitrary rank and regularity order N), polynomials are generalized eigenfunc-
tions for the wavelet transform. That is, a sequence h(k) whose elements are
a polynomial in kc of degree less than or equal to N will emerge as a polyno-
mial sequence of the same degree under the operation of convolution with a
wavelet filter and decimation by a factor of m. This property characterizes
regular wavelet lowpLis filters, and should prove useful, for examnple in the
detrending of signals with an underlying polynomial trend. When using a full
wavelet filter bank, a purely polynomial input will produce nonzero outputs
only for the lowpass filter.
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We have also made significant steps 124] in the development of wavelet
theory for dimensions greater than one. In this setting the sampling sublattice
becomes paramount; in the classical one dimensional rank 2 case, the sam-
pling sublattice is the even integers 2Z C Z. While Mallat (25] introduced
a separable wavelet theory in multiple dimensions (i.e., multidimensional
wavelets as tensor products of one-dimensional wavelets), the fully general
theory outlined in [24] permits the use of a nonseparable subsampling ma-
trix M. Specifically, a general n-dimensional wavelet system is given by an
n-dimensional lattice A C Rn, a matrix M with integer entries and a set of
coefficients aA satisfying:

"* MACA

"* M is expansive (all eigenvalues strictly greater than one)

•\M ,a = det M6""6b, 0,

* E a" = det M68,o .

The scaling and wavelet functions will then be given by appropriate gen-I eralizations of the formulas (4) and (5). One can seek regular wavelets as
we did above for the one dimensional rank m case; preliminary work on this
problem is reported in [30]. Figure 3 displays a nonseparable two-dimensional
wavelet (the "Novon" multiplier) with regularity order N = 1.

2.2 Parametrization of Wavelets

Parametrization of compactly supported wavelets is essential for effective
choice of a wavelet basis in a particular application. We have arrived at t-
wo independent parametrizations of compactly supported wavelets, that of
Pollen [27] cited earlier and one due to Wells [55]. We summarize Wells'
parametrization of regular compactly supported wavelets here. Given a scal-
ing coefficient set {ak) } with frequency response A(e;w), Daubechies describes
the scaling coefficients with regularity of order N as those for which

A(ei') = (1 + e)t,)NQ(eiw).

She solves for Q by changing variables to y = sin2 (w/2), examining

IA(eDW) j
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Figure 3: Novon scaling function with regularity order N = 1

and finding that

N - I + ( k)Y,+ YP(y), (6)

k=O

subject to several constraints on the polynomial P. In particular,

P(1/2 - y) must be an odd polynomial (7)

and
N-1 _,j( ik~ +yNp(y)>_o0 (8)

Wells takes this description as a parametrization, called the reduced moduli
space, of all wavelet scaling coefficients sets with regularity of order N. For
each regularity order N and degree M of the polynomial P (i.e. M free
parameters to the wavelet) he describes a polyhedron in parameter space,
each point of which gives rise to a valid polynomial P satisfying (7) and
(8). Furthermore, the vertices of the polyhedron lie on the boundary of the
reduced moduli space, so that in some sense this polyhedron is maximal. The
signal processor can then optimize over the parameter space for an additional
desired trait (such as the stopband performance of the wavelet lowpass filter).
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2.3 Wavelets and Classical Analysis

Wavelets and Weierstrass functions

Resnikoff [38] at Aware has discovered a link between the compactly sup-
ported wavelets of Daubechies and Weierstrass' famous example of a nowhere
differentiable continuous function. In particular, he has found that the s-
caling function V can be expressed as an infinite series of harmonics of a
Weierstrass function. Weierstrass' original example was the infinite series

O ak cos bA,7rx;
k=0

we generalize this to allow the parameter a to be an n x n matrix and define
the Weierstrass function with matrix parameter a to be

00

W[a, b]: ake2'bk. (9)
k=O

We now break the scaling function V of equation (4) into pieces defined on
the unit interval [0,11:

Qj(X) += VU + -x)X[0,1](x) ; (10)

here X[o,1 ](x) denotes the characteristic function of the unit interval. Resnikof-
f [38] proves that the vector-valued function $(x) = {$j(x)}N=1 can be rep-
resented as a series of "Weierstrass harmonics":

t(x) = CO + E CqW[T,2](qx) (11)
q odd

where the matrix
T := (T:k) = (.a2j-k + a2j+,•)

2

is derived from the scaling coefficients aA, and the Cq can be determined from
V. Furthermore, Resnikoff has discovered that if the scaling function V is
regular of order N, (e.g. the wavelet moments vanish up through order N),
then each of the functions Oj is a scalar multiple of the Bernoulli polynomial
of degree j. A detailed discussion and proofs appear in Resnikoff [38].
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Daubechies Scaling Function on [0,3)

Pollen [29] has used the first principles of analysis to investigate the s-
caling function VD4 associated with Daubechies 4-element scaling coefficient
set "D4". He is able to prove the following results:

"* VD4 takes its values in Q[v3].

"* 'D4 is continuous.

"* ft4 is not right-differentiable at any dyadic integer 2 in [0, 3).

"• VD4 is left-differentiable at every dyadic integer in [0, 3).

2.4 Wavelet Frames and the Wavelet-Galerkin Oper-
ator

Lawton at Aware has investigated [20, 21, 22] the properties of rank 2 wavelet
expansions of the function space L2(R). He has been able to prove that every
compactly supported wavelet gives rise to a "tight frame" for L2 (R), and he
has also characterized the exceptional set of those wavelets which yield a
tight frame but not an orthonormal basis. Lawtons's approach keys on the
wavelet-Galerkin operator, defined as follows:

Given a valid wavelet scaling sequence a, form the operator S. on se-
quences in 12 by

S.(h)(k) = 2 E a,''h(2k + m - n). (12)

The quadratic orthogonality condition (1) means that the Dirac sequence
6(k) is an eigenvector for S. with eigenvalue 1. Denote by W the subset con-
sisting of those scaling sequences for which S. has more than one eigenvector
with eigenvalue 1. Use VN to denote the set of scaling sequences of length
2N and define WN = W fl VN. In [20] Lawton proves the following

Theorem 2.2 For N >_ 1, let a E VN, let V and 0 be the scaling function
and wavelet constructed from a, and let S. be as above. Then the set of

2 A dyadic integer is a rational number z such that there exists N, E Z with 2 N.z E Z.
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(normalized) dyadic scalings of integer translates of 0b forms a tight frame
for L2(R), i.e. for any g E L2(R),

g = E(Ojklg)Oj'1 •
i'k

Furthermore, for N >_ 2, WN is a nonempty proper algebraic subset of VN
and the tight frame forms an orthonormal basis unless a E WN.

In (21], Lawton has been able to turn this result into a characterization
of those wavelet bases which are orthonormal bases:

Theorem 2.3 Let a E VN. Then the tight frame of wavelets constructed
using a is not an orthonormal basis if and only if a E WN, i.e. iff S. has 1
as an eigenvalue with multiplicity greater than 1.

2.5 Puture Directions

The theory of higher rank wavelets presented above provides a high-level,
unified framework encompassing many of the transforms used in signal pro-
cessing today. Promising research directions exist in this area: parametriza-
tion of the family of higher rank wavelets, the theory of biorthogonal rank
m wavelets (the rank 2 theory was introduced in [1]), and the application of
higher rank wavelet transforms to specific application areas, such as image
processing and sonar transient detection.

0
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Figure 4: Aware's wavelet-based image compression system

3 Signal Processing
3.1 Image Processing O

In the course of its work on the contract, Aware has developed a state-of-

the-art wavelet-based still image compression system. We outline the design
of the system and its performance below; greater detail appears in [56] and
[37].

Our system for (lossy) compression of images is built of three components:
a (wavelet) transform, a (lossy) quantizer, and a (lossless) encoder, depicted
in Figure 4.

The transform is a rank 2 wavelet transform, which operates on a discrete
data stream by convolution and decimation. In particular, we have two filters,
a lowpass filter {ak} and a highpass filter {bk} with

bk ---(- )a -

and from a one-dimensional input signal f(n) we obtain the two outputs

Lf(n) = (f * a)(2n) (13)

and

Hf(n) - (f * b)(2n). (14)

Compe2"hudr C ase
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Figure 5: Mallat decomposition

In order to apply this one-dimensional transform to a two-dimensional ar-
ray of pixels I representing an image, we apply the 1-d transform first in
the z direction to produce two output images Ljl and H1I, and then ap-
ply the 1-d transform in the y direction to these to obtain 4 output images,
LLI, LH•I, HXLYI, H.H.I. We then iterate this procedure on the subim-
age L.LI in a Mallat tree structure. ' This iterative decomposition of an
image is depicted in Figure 5. Observe that because of the critical decima-
tion, the output of the transform has exactly as many data points as the
input.

The next step is to quantize the values of the transform coefficients; we
experimented with a number of scalar and vector quantizers, and ultimately
found the most effective method to be a uniform scalar quantizer with dif-
ferent binwidths for the different output bands. One reason for this is that
the high-frequency components (such as the H ,HI output) are concentrated
around edges, and image intensities at edge discontinuities are known to be
approximately Laplacian-distributed. We can incorporate these Laplacian
distributions into computations for a uniform scalar quantizer rather easily,
as described in [7).

Once the transform coefficients have been quantized, we further exploit

3We have investigated alternative methods of iterating the transform, e.g. further
decomposing the LUll! term in z; details are presented in [37].
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redundancies in the data by lossless encoding, such as Huffman coding or an
adaptive coder such as the Q-coder developed at IBM [32]. We have obtained
our best results with the (nonadaptive) Huffman coder.

Upon implementing this wavelet image compression system, we have
found it to exhibit several advantages over Fourier-based methods. First,
since we used compactly supported wavelet filters (cf. [2]), edges contribute
to a small number of transform coefficients. This greatly reduces the "ring-
ing" associated with Fourier methods, where a discontinuity has a broadband
spectrum, and quantization can produce artifacts across the support of the
Fourier components. Fourier methods such as the DCT require that the im-
age be broken into subblocks (usually 8 x 8 or 16 x 16), both ., bound the
O(N log N) complexity and to limit the ringing just described. This produces
quilt-like artifacts once the transform coefficients are quantized, as differen-
t subblocks end up with different total intensities. A significant advantage
provided by our system is that no subbblocking of the image is necessary
(the wavelet transform has O(N) complexity), and these blocking artifacts
are eliminated. Finally, the local nature of the computations (13) and (14)
enables efficient hardware layouts for wavelet transform computations.

3.2 Signal Detection and Classification

Workers at Aware have investigated numerous areas of signal processing with
wavelets, including an analysis of wavelet transform computations [8], a study
of wavelets and linear translation-invariant operators [11], an analysis of the
effect of multirate filtering on convolution [15], discovery of new relationships
between the wavelet and Fourier transforms [39], and an investigation of
wavelet phase space [36].

Gopinath and Burrus [8] have developed efficient means of computing
the continuous wavelet transform for an arbitrary wavelet by using the dis-
crete wavelet transform as an intermediary. Define the continuous wavelet
transform of a function f with respect to a wavelet w by

W f f(,) = f f()2"/2w(2ut - r)dt

and write the coefficients of the discrete wavelet transform of a function g
with respect to the wavelet 0 (as in (22) as

Wg(j, k).
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Then Gopinath and Burrus find that

W~,f(s, )- Wof(j', k')Ww(j, k)W,0k(s +j -j',2v+j-'k'+ujr+ k').

(15)
In other words, a general continuous wavelet transform may be computed as
a double summation of the discrete wavelet transform of f and w against a
kernel which is the continuous wavelet transform of the wavelet 0 with itself.
Notice that the kernel can be precomputed once (as may be the DWT of
the wavelet w, once it is known), and so the continuous wavelet transform
computation is reduced to a discrete wavelet transform computation, which
may be done efficiently by lattice methods such as in [47].

Linear translation-invariant operators (such as differentiation) can be
well-represented by the wavelet-Galerkin method; this is developed in Gopinath,
Lawton, and Burrus [11]. Consider a linear translation-invariant operator T
(e.g. T = dP/dxP); it can be represented as convolution with a kernel t(x).
In the case of the Galerkin method we approximate the operator T defined
on L2(R) by an operator Td which is the projection of T onto a subspace VA,
associated with a meshsize Ax: Td = P&ZTPAz where P&, is the projection

onto V& = Span { - k)}. Thus we obtain an expansion

PAf = E f,&•:,kW,&.,k
k

and
gAz,k = fA.,k * tAz (16)

where
t Az,k = (CP.z,o, Tp.&,k).

Thus the wavelet-Galerkin discretization of T acts as a discrete convolution
on the expansion coefficients of fd. It is proved in [11] that

* If a function f can be well-approximated locally by polynomials of
degree less than or equal to n, then the action of the operator T is
well-approximated by convolution of the samples of f with the kernel
tk that acts on the expansion coefficients.

@ If the wavelets being used in this approximation procedure have mo-
ments vanishing to order M, then differentiation of order p _< 2m is
well approximated by the wavelet-Galerkin discretization



18

Heller [15] has investigated the effect of multirate filtering (convolution
followed by decimation) upon linear convolution. As the core operation of
linear time-invariant systems, convolution is perhaps the most significant
operation of signal processing. The Fourier transform is important precisely
because it diagonalizes convolution, and yet in doing so it loses all time-
domain information. Multirate filter banks provide both time and frequency
information in their output, yet lose the precision of the Fourier transform in
dealing with convolution. Heller's work in [15] is a first step in understanding
the effect of convolution and decimation on linearly convolved inputs.

Resnikoff and Burrus [39] have discovered a set of formulae relating the
Fourier expansion of a periodic signal with its wavelet expansion. Suppose
that g(t) is a periodic function on the real line (i.e. g(t) = g(t + 1)) whose
Fourier expansion is

g~t) =

with coefficients

Analogously, the wavelet expansion of g is

"00 
00 00

g(tOj,k(t) (17)
I=-00 j=O k=-oo

where
0 3,,k(t) = 2J/ 2 0(2it - k)

and the family {f 0, 0kj,k} form an orthonormal basis for L2(R) as described
in [21].

Resnikoff and Burrus use the properties of the scaling function W and
wavelet 0b in combination with the periodicity of g to derive the facts that

c(l) = c(O) = c for all I.

They then express the Fourier coefficients b(n) in terms of the wavelet coef-
ficients and the Fourier transform of the wavelet 0:

b(n) = c if n=O (18)
E) E•0 =OE•=-d(j,k)Oi,k(n) if n 0i
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Conversely, they find that the wavelet coefficients of g in terms of the
Fourier coefficients:

00

d(j, k) E • b(n)tk(-n) , and (19)
-00

c(l) = c = b(0). (20)

Resnikoff [36] has developed and investigated the notion of wavelet phase
space - the space of wavelet coefficients which provides a time-frequency
picture of a function. In particular, suppose we are given a rank 2 wavelet
system {ak} and the associated scaling function p and wavelet 0, so that an
L2 function f(x) has the expansion

f(x) = F, p,(X) + cgojk(x). (21)

IEZ jEZ÷ kEZ

Alternatively, we can omit the scaling function part and use the full wavelet
expansion

Afx) )c "~k(x) (22)
jeZ keZ

Whereas a Fourier transform analyzes a signal in terms of its frequencies,
a wavelet transform breaks the information content of a signal into scale
and time components. The index j determines the scale while the index
k represents time (or spatial) translation within that scale. The collection
of wavelets {fkjk).fixed form an orthonormal basis for the information (or

detail) at scale j; The detail over all scales j with j :_ 0 is amalgamated into
the set of scaling functions VI(z) = V'(x - 1) in the expansion (21).

We can now plot the magnitudes of the coefficients C~k, with the x axis
as the k or time index and the y axis as the j or scale index, providing a
time-scale representation of the energy in the signal f. Several examples
are worked out in detail in [36]; we describe one of them, the Dirac delta
function, here.

The Dirac distribution has the full wavelet expansion

6(x) = F, 2j/20i-k)Ojk(X);
jEZ kEZ

the magnitudes of these coefficients for a fixed basis ({ik} are shown in figure
6. The magnitudes of the coefficients grow exponentially with j even as the
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Figure 6: Wavelet phase space plot of the Dirac distribution

support width in k is shrinking. A finite approximation of the graph of the
Dirac distribution is shown above the phase space plot, while a plot of the
magnitude of the Dirac's Fourier transform is shown at the right. Notice that
the wavelet phase space representation accurately describes the location of
the Dirac, which the Fourier representation is unable to do.

4 Wavelets and the Numerical Solution of
Partial Differential Equations

We have applied wavelet based numerical methods to the solution of partial
differential equations [6, 18, 19, 33, 34, 35, 541. Specifically, we compare the
Wavelet-Galerkin method to standard numerical methods for the numerical
solution of
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"* The Euler equations of a two-dimensional, incompressible fluid in a
periodic domain.

"* The Biharmonic Helmholtz equation and the Reduced Wave equation
in nonseparable, two-dimensional geometry.

"• The Euler and Navier-Stokes equations in nonseparable, two-dimensional
geometry.

The wavelet methods have significant advantages with regard to stability,
accuracy, and rate of convergence.

We numerically resolve the two-dimensional Euler equations and study
the phenomena of two-dimensional turbulence. The compactly supported
wavelets of Daubechies provide an orthogonal basis for the square integrable
functions on the fine or circle. These have several advantages for the nu-
merical approximation of solutions of differential equations, including exact
representation rf polynomials of certain degrees and compact-support. For
nonlinear systems (Euler equations) with solutions that may develop sharp
gradients the primary advantage seems to be that wavelets can accurately
approximate the smooth component to a solution while correctly resolving
the components associated with strong gradients [541. The reason for this is
that wavelets are less smooth than their order of approximation and therefore
are less stiff than other higher order methods, i.e. Fourier or spline bases.
For instance, the six term Daubechies scaling function (D6) can exactly rep-
resent polynomials through the second degree. However, the actual scaling
function has only a continuous 1.06 derivative.

We apply the Daubechies scaling function (translates of) with the stan-
dard Galerkin technique to define the wavelet-Galerkin method. We find it
possible, with appropriate implicit time differencing, to develop numerical
methods for the inviscid Euler equations. We also develop solutions that use
implicit time differencing and the standard hyperviscosity.

For the inviscid calculations the numerical solutions develop a locally os-
cillatory structure. However, a simple three term smoothing removes the
oscillations and produces a smooth approximation. The hyperviscosity regu-
larized solutions are already smooth. We compare the results of these calcula-
tions by integrating over very long times. The similarities and differences sug-
gest several interesting consequences for two-dimensional turbulence [54, 35].
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Basically, the inviscid calculations over a long time preserve certain hy-
perbolic structures that are not preserved by the regularized calculations,
and seem to better capture the limiting inviscid behavior.

We have presented a series of numerical experiments that illustrate sev-
eral phenomena of possible relevance to two-dimensional turbulence and its'
numerical resolution [54].

We use compactly supported wavelets as a Galerkin basis and develop
a wavelet-Capacitance Matrix method to handle boundary geometry. We
have developed an extension of the standard Capacitance matrix method
that greatly reduces the numerical residual errors [33, 34]. In contrast with
the standard method, our method shows fast, even spectral, convergence
at relatively coarse levels of discretization. Furthermore, for comparable
levels of discretization the rates of convergence appear to be independent of
the geometry. For several geometries we have made a detailed comparison
of methods, examining accuracy and rates of convergence. We have also
developed Least-Square versions of our algorithm for the Helmholtz equation
in nonseparable geometries and examined the accuracy and convergence of
these methods.

In summary, our numerical study of the Helmholtz equation shows that:

" the Wavelet-Galerkin/Capacitance Matrix method (The Wavelet-Capa-
citance Matrix Method) is stable and spectrally accurate. These results
apply to general nonseparable domains and all ranges of the parame-
ters.

" The Wavelet algorithm is found to obtain accurate results for prob-
lems where, for instance, finite difference methods do not converge, or
converge slowly, and where Fourier Spectral methods do not apply.

"* For a fixed level of discretization, increasing the order of the wavelet
basis spectrally decreases the error.

"* The rates of convergence in sup norm appear to depend on the wavelet
basis, DN, and discretization, 6z, as (bz)N-5.

"* The rates of convergence in sup norm appear to be independent of the
domain shape.

0
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* Least-Square versions of the wavelet algorithm can preserve accuracy
and decrease the computation by more than a factor of four. The finite
difference algorithms would not allow effective least-squares implemen-
tations.

Furthermore,

"* All errors (accuracy and convergence) are measured in the pointwise
sup norm.

"* Our implementation is fast, since it is based on fast (FFT) evaluations
for periodic geometry adapted to nonseparable geometry.

"* The basic algorithm applies to one, two and three space dimensions,
without essential modification.

"* For the Euler and Navier-Stokes equations fast wavelet algorithms have
been developed for flow in nonseparable domains.

* 5 Channel Coding

Tzannes and others at Aware [42, 43] have developed innovative applica-
tions of wavelets to error correcting codes in communications channels. In
particular, the wavelet channel coding algorithm presented in [42] provides
error correction in additive white Gaussian noise burst noise and flat fading
channels. We have carried out simulations which verify these performance
gains.
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6 Appendices

6.1 About Aware, Inc.

Aware, Inc. is a mathematical engineering company that designs and sells
software and chipset products for bandwidth management. Aware's prod-
ucts organize and compress signals such as images and video, audio and
speech, for storage and communications applications. Based on the power-
ful new wavelet mathematics, which provides superior signal representation
and hierarchical data structures, Aware accomplishes this by compressing
the amount of computation and storage needed to represent the signal, and
managing the compressed data stream to create breakthrough products for
satellite communications, teleconferencing, video editing and distribution,
computer multimedia systems, mobile radios, cellular telephones, and secure
communications.

The Changing Communications Environment
A revolution in information processing has been made possible by new t-
elecommunications and computing technology. Digital formats enable com-
puter generated pictures and sound, and conventionally generated photograph-
s, video, audio and speech communications to be modified by computer edit-
ing and to interchangeably share the same storage media and communications
channels. The boundaries between markets that were once distinct and in-
dependent are blurring, and product lines are overlapping. Companies are
evolving new types of organization and skills to respond to the new commu-
nication synthesis.

Bandwidth Management
The common denominator of digital computing and digital telecommunica-
tions is bandwidth. Bandwidth is the measure of how much information can
be transmitted or stored by an information system. It is the fundamental
scarce resource whose value is reflected in technology trends and produc-
t pricing. The need for more communications, more information storage,
and more computing resources in business and consumer products is press-
ing against bandwidth scarcity. Bandwidth management is the key tool for
enabling new products, and for achieving higher productivity and profits
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from existing systems.
Bandwidth can be increased by using more expensive technology: su-

percomputers, large disk drives, higher frequency communications carrier
signals. Each of these methods increases the amount of usable bandwidth.
Or, the available bandwidth can be used more efficiently by compressing the
source information.

Compression reduces the amount of bandwidth required to do the task.
Compression doesn't depend on the technology of computers or storage media
or communications equipment: it just reorganizes the information that the
customer uses in a much more efficient way.

6.2 Government contracts related to this contract

During the period of this contract, other DoD contracts that depend on it
were awarded to Aware. They include:

* Spread Spectrum: Subcontract to Atlantic Aerospace Electronics Cor-
p., based on Aware's wavelet channel coding technology (Contract No.
AAEC-1214.046-91-001).

* ONR Wavelet Transform Chip: Design and fabricate a wavelet trans-
form processor chip to demonstrate VLSI wavelet technology (Contract
No. N00014-90-C-0167).

* ONR Parttial Differential Equations Research: (Contract No. NOO014-
91-C-0086).

6.3 Aware reports and presentations supported in
part by this contract

6.3.1 Reports and publications supported in part by this contract

The following is a list of technical reports whose preparation was supported
in part by this contract.

* R. Glowinski, "Note on a Multiplier-Fictitious Domain Method for the
Numerical Solution of the Dirichlet Problem," Aware Technical Report
(1990)
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"* R. Glowinski, W. Lawton, M. Ravachol and E. Tenenbaum, "Wavelet
Solution of Linear and Nonlinear Elliptic, Parabolic and Hyperpolic
Problems in One Space Dimension." in Proceedings of the 9th Inter-
national Conference on Numerical Methods in Applied Sciences and
Engineering SIAM, Philadelphia (1990)

"* Heller, P. N. "Higher multiplier Daubechies wavelets," Aware Technical
Report AD910614 (1991).

"* Heller, P. N. "A construction of higher multiplier wavelet matrices",
Aware Technical Report AD910728 (1991).

"* Heller, P. N. "Polynomials are generalized eigenfunctions of the wavelet
transform," Aware Technical Report AD910912 (1991).

"* Heller, P. N. "Polynomials are generalized eigenfunctions of the wavelet
transform," Aware Technical Report AD910912 (1991).

"* Heller, P. N., Resnikoff, H. L., and Wells, R. 0. Jr., "Wavelet matrices
and the representation of discrete functions", to appear in Wavelets: a
tutorial, C.K. Chui, ed., Academic Press, 1991.

"* Heller, P. and Resnikoff, H. L., "Polynomials are generalized Eigenfunc-
tions of the wavelet transform," Aware Technical Report AD910912.

"* Heller, P., "Higher rank Daubechies wavelets - Preliminary report,"
Aware Technical Report AD911204.

"* Huffman, J. C., Zettler, W. and Linden, D. C. P., "Applications of
compactly supported wavelets to image compression," Proc. SPIE,
vol. 1244, pp. 150-160, (1990).

"* Jagler, K. B. and Morrell, W., "The application of multiresolution
wavelet techniques to interference cancellation problems", Report to
MRJ (1991).

"* Lawton, W., "Tight frames of compactly supported affine wavelets",
Aware Technical Report AD891012.
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* Latto, A. and Tenenbaum, E., "Compactly supported wavelets and the
numerical solution of Burgers' equation," C. R. Acad. Sci. France,
S~rie I, pp. 903-909 (1990).

* Lawton, W., "Necessary and sufficient conditions for constructing or-
thonormal wavelet bases," J. Mathematical Physics, vol. 32, pp. 57-61
(1991).

e Lawton, W., "Tight frames of compactly supported affine wavelets",
Aware Technical Report AD891012, (1989).

* Lawton, W. and Resnikoff, H. L., "Multidimensional wavelet bases,"
Aware, Inc., Technical Report No. AD910130 (1991).

* Pollen, D., "SU1(2, F[z, •]) for F a subfield of C," J. of the Amer.
Math. Soc., vol. 3, pp. 611-624, (1990).

* Pollen, D., "Parametrization of compactly supported wavelets", Aware
Technical Report AD890503.4.1 (1989).

* Pollen, D., "Linear one-dimensional scaling functions", Aware Techni-
cal Report AD900104 (1990).

* Pollen, D. and Linden, D., "Quadratic one-dimensional

* Resnikoff, H. L., "Wavelets and adaptive signal processing," to appear
in SPIE International Symposium Proceedings, Vol. 1565, Adaptive
signal processing, October, 1991.

* Resnikoff, H. L., "Wavelets and adaptive signal processing," Optical
Eng. 31(6), June, 1992.

e Resnikoff, H. L. and Wells, R. 0., "Wavelet analysis and the geometry
of Euclidean domains", J. of Geometry and Physics, vol. 8, pp. 273-282
(1992).

9 Weiss, J., "Wavelets and the dynamics of enstrophy transfer in two
dimensional hydrodynamics," Aware Technical Report, in progress,
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" Weiss, J., "The long term limit of two-dimensional Euler flow," Aware
Technical Report AD911029.

"*J. Weiss, "Wavelets and the Study of Two Dimensional Turbulence," in
the Proceedings of the French-USA Workshop on Wavelets and Turbu-
lence, Princeton University, June 1991. Y. Maday, Ed. Springer-Verlag,
NY.

6.3.2 Related reports

The following report was largely prepared by Aware under subcontract to
Martin-Marietta. It reports work based on research supported by the con-
tract for which present document is the Final Report.

* Stirman, C., "Applications of wavelets to radar data processing," Final
Technical Re- ,- under DARPA Order No. 7450 monitored by AFOSR
under contract No. F49620-90-C-0050. Martin-Marietta Electronics,
Information, and Missiles Group, July 1991.

6.4 Wavelet technology in the popular press

Articles on wavelet technology that have mentioned Aware's contributions
based on work supported by Darpa include:

Business Week, Dr. Dobbs Journal, EE Times, Radio-Electronic
Times, Science, Scientific American, The Boston Globe, The E-
conomist, The Los Angeles Times.

6.5 Lectures and presentations supported in part by
this contract

The following is a selection of presentations made with partial support from
this conytract:
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O1

Preface

This monograph is intended to provide the reader interested in mathemati-
cal engineering with an informal tour of the theory of compactly supported
wavelets, its applications, and what it tells us about the relationship be-
tween the discrete and the continuous in mathematical models of physical
systems.

Its content is largely based on the work of my present and past colleagues
at Aware, who are in large measure responsible for the many results it
contains. I of course assume all responsibility for errors (of omission as well
as commission) but in this instance I could not have made some of those
errors without their help! The book also is indebted to other explorers of
the vast new territory that the concept of compactly supported wavelets has
revealed. I have acknowledged their contributions where they have played
a part in the story I have to tell.

I am pleased to express my appreciation to my former colleagues Wayne
Lawton, David Pollen, David C. Plummer (Linden) and Eric Tenenbaum,
whose early and fundamental contributions to the development of wavelet
theory at Aware have profoundly influenced the way I think about the
subject, and to Ramesh Gopinath and Professors C. S. Burrus and Roland
Glowinsky for their insights and stimulation during their extended visits to
the company. Discussions with Professor Louis Auslander during a period
of more than three years stimulated the author's mathematical imagination
and introduced Aware to the potential of wavelets for channel coding.

Special thanks are due to Jonathan Devine, Peter Heller, John Huffman,
Karl Jagler, William Morrell, Richard Tolimieri, Michael Tzannes, John
Weiss, and Bill Zettler, and to my friend and colleague Ronny Wells, all of
whom will recognize their hands (and heads) throughout this book, and to
the rest of the staff of Aware whose contributions to this book have been
considerable even though they may be less visible.

I am particularly grateful to Christina Gorecki who kept the unruly
team of Tex, c Matheinatica,) a- 'h Macintosh operating system hitched
together and more or less pulling ii. a common direction as a sideline while
she performed her real duties.

Aware, Inc. is indebted to the Defense Advanced Research Projects
Agency for its far-sighted support which enabled Aware to explore fun-
damental issues at the interface of mathematics and computation in the
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context of developing practical solutions to difficult and important prob-
lems. We believe that this partnership of common interests between small
commercial companies and government agencies, between mathematicians
and engineers, and between theory and practice will be the paradigm for
developing advanced technology in the twenty first century.

Collected below are certain symbols used in the text.

Z The integers Z := J...,-2,-1,0,1,2,..., n...
Q The rational numbers Q := {m/n where m, n E Z and n 0 01.
D The dyadic rationals D := {q/2" : q E Z an odd integerand n E Z).
R The real numbers.
C The complex numbers.
L2 (R) The space of finite energy signals on R.
L2 ([O, 1]) The space of finit.ý energy signals on the interval [0, 1].
Ig z The base 2 logarithm of x.

The imaginary unit is i := V\.



0

Figure 1: Aware's logo. The square is a map of the two dimensional pinched
torus parameter space of six coefficient wavelet matrices. The curves are the
loci of wavelet matrices that correspond to wavelet bases that are formally
differentiable of order 1.
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Figure 2: One dimensional row-transformed Lenna image employing the
D3 wavelet basis. Lenna was the centerfold in the November 1972 issue of
Playboy. This image, digitized from the original, has become a standard in
the image processing community, which usually, but incorrectly, identifies it
as "Lena." Today Lenna is also known as "NITF-6" in the National Image
Transmission Format test image suite.
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Chapter 1

The New Mathematical
Engineering

1.1 Trial and Error in the 21st Century

A fundamental break with the past occurred during the last forty years.
Each of us is now dependent on technology for sustaining not only our style
of life but possibly our life itself. Today nations and corporations under-
take projects whose scale and complexity were undreamt merely a genera-
tion ago. People depend on products their grandparents would have called
miracles, and they expect the marketplace to provide levels of performance,
safety, and affordability that require advances all along the convoluted fron-
tier of science and technology.

Before this break with the past, most large undertakings differed in
degree, but not in kind, from what had previously been tried and mastered.
New products were tested in the laboratorl and industrial processes were
scaled up from laboratory trials.

Improvement by trial and error served past generations well, but it
cannot serve the future. Today, design and manufacturing antecedents that
provide insight into the long term consequences of large scale projects are
usually lacking. The trans-Alaskan pipeline, landing explorers on the moon
and bringing them home, assessing the crashworthiness of new automobiles,
and finding the optimal shape for the wing of a jet transport are problems
that cannot be solved by trial and error or by scaling up the results of
affordable small scale tests.

Today, testing the real thing is often too costly, too time-consuming, or
just too complicated to be practical. More and more often, when a project

21
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involves human health, or the interdependence of human well-being and the
well-being of the environment, testing the real thing may not be possible.

Development by trial and error was suited to the time when technology
was in its infancy. That approach is no longer adequate. The need to pre-
dict performance and consequences, and to optimize design for safety, qual-
ity, and cost have become key competitive and social factors for industrial
economies. These factors call for new tools suited to these new problems.
One important new tool for predicting performance and optimizing design
is mathematical engineering.

1.2 Mathematical Engineering

1.2.1 Active Mathematics

Traditionally, mathematics only played a role in the earliest stages of en-
gineering design. Mathematics was used, for example, to prescribe the
arrangement and strength of the parts of a structural bridge design, or the
shape and size of a wing that would meet the design objectives for lift, or to
test the electrical characteristics of a layout for a VLSI chip design. Once
the design was complete, the role of mathematics was played out.

Today, the digital computer and the VLSI chip have created a new
role for mathematics in technology. Mathematical algorithms can now be
directly embodied in products, so that every time the product is used, the
algorithm is working. This active mathematics enables totally new classes
of products, from the cellular telephone, where an algorithm in the form of
channel coding protects the message from the distortions of noisy channels,
to compact audio discs, where error correction coding insures the fidelity
of music despite dust and imperfections of the recording medium. This
new kind of use of mathematics will have an increasingly profound impact
on adaptive process controls in manufacturing and on real-time dynamic
controls in products - from automobiles and airliners to electronic pocket
organizers - that are used by everyone.

Active mathematics calls for a new approach to the use of mathematics
in engineering - a new mathematical engineering - that employs a sys-
tems approach to problems where mathematical process models, efficient
algorithms for computer numerical solutions, and area-efficient VLSI imple-
mentations for portable and computation-intensive real-time applications
are efficiently combined to yield an integrated solution.

S
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1.2.2 The Three Types of Bandwidth

Communications Bandwidth

Bandwidth is usually thought of in the context of broadcast communica-
tions, where it is the physical means by which a radio or television signal
carries information. In the United States, the available spectrum is allo-
cated by the Federal Communications Commission (FCC) for signals that
propagate through the atmosphere. Although bandwidth is an abstract
concept that many people find difficult to understand, from an economic
point of view bandwidth acts like a commodity. Like any other commodity,
bandwidth can be plentiful or scarce relative to the need for it. With the
growth of telecommunications and computing, communications and elec-
tronic storage bandwidth have become increasingly scarce commodities.

Information Storage Bandwidth

Information that is stored on a disk drive or any other storage medium also
consumes bandwidth, but in this case the storage bandwidth that the device
uses is built into the product in the form of the physical storage medium.
For a fixed technology, the price of the product will generally increase with
the storage bandwidth it provides. The user pays for the bandwidth.

Computational Processing Bandwidth

Every computer has a computational bandwidth which is roughly propor-
tional to the number of operations it can perform per second. Computa-
tional bandwidth is really a measure of the amount of computation that
a computer can perform per unit time. The difference between these two
definitions depends on the efficiency of the algorithms that are employed.
Processing bandwidth is not strictly independent of communications band-
width and storage bandwidth because a computer combines logical process-
ing operations, communication with its internal memory, and intermediate
storage of information in registers as components of the computational pro-
cess.

These three types of bandwidth - communications bandwidth, informa-
tion storage bandwidth, and computational processing bandwidth - are three
aspects of one fundamental concept.
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Table 1.1: Spectrum allocation in the United States

Frequency Band Designation Propagation Typical Uses
(kHz) Characteristics

3 x 10' - 3 x 10' VLF Submarine communications
3 x 104 - 3 x 105  LF Long-range navigation;

Marine communications
3 x 105 - 3 x 106 MF Atmospheric noise. AM broadcasting;

Emergency frequencies;
Maritime radio.

3 x 106 - 3 x 107 HF Ionospheric Telephone; Facsimile;
reflection Aircraft and ship comm;

International broadcasting;
Military communications

3 x 107 - 3 x IOs VHF Near line-of- VHF television;
sight; scattering. FM two-way radio;

AM aircraft comm.
3 x 105 - 3 x 1010 UHF Line-of-sight. UHF television;

Radar;
microwave links.

3 x 109 - 3 x 1010 SHF Line-of-sight; Satellite communications
Rainfall attenuation. Radar.

3 x 100° - 3 x 1011 EHF Water vapor Radar;
absorption. Satellite communications

1012 - 1016 Infrared, Optical communications.
Visible Light,
Ultraviolet
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1.2.3 Communications Bandwidth: Mathematical En-
gineering for Channel Coding

Digital signal processing for communication is one of the areas where wavelet
technology is making a difference.

Communication always involves a sender, a receiver, and a "communi-
cations channel," which is a means for transmitting the signal. A conver-
sation, a radio broadcast, a cable TV program, a person reading a book,
a person typing on a computer keyboard, and a computer transferring in-
formation to a hard disk are all examples of communication. In each case,
information is transmitted by modifying something physical that can inter-
act with both the sender and the receiver. For instance, speaking causes
small systematic pressure variations in the air between the speaker and the
hearer, which the hearer's ear translates or "decodes" into a stream of ner-
vous impulses that are transmitted to the brain. The pressure variation of
air is the communications channel for transmitting the speech signal. The
air between the speaker's mouth and the hearer's ear can be thought of as
the "carrier" of the speech signal; the small pressure variation caused by
speaking "modulates" the carrier to encode the information signal on it.

Channel

For broadcast radio and TV, the channel is the electrical variation of an
electromagnetic wave broadcast from the transmitter tower. The electro-
magnetic wave is the carrier. The small electrical variations that represent
the information signal modulate the carrier by changing its physical prop-
erties. Amplitude modulation, used for AM radio, modifies the energy of
the electromagnetic carrier wave, while frequency modulation, used for FM
broadcasts and TV, modifies its frequency.

Noise

While a signal is passing from the source to the receiver, it is at the mercy of
the surrounding physical environment. A lightning flash will drown out an
AM radio signal just as a drum roll will drown out speech. The information
signal is still there, but it is masked by the larger signal and cannot be
detected by the receiver, just as the ear cannot detect a softer tone masked
by a nearby louder one. "Noise" is simply an unwanted m~dulation of the
carrier whose presence interferes with detection of the desired signal. One
person's noise is another person's signal. The boom boxer thinks the nearby
conversation is noise. Other people's conversations audible on a telephone
line are usually placed into the noise category. The telephone company
calls this "co-channel interference."
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Noise - interference - is always present in every communications chan-
nel, and it corrupts every communication. It causes the receiver to make
errors in decoding the transmitted signal. These channel errors limit the
efficiency of the communications system.

Channel Capacity

Every communications channel can transmit a certain amount of infor-
wation but no more. The number of bits per second that a channel can
transmit is called its channel capacity. Channel capacity decreases as the
amount of noise increases, and it increases as the amount of energy used to
modulate the carrier increases. For radio channels, the channel capacity is
proportional to the channel's frequency bandwidth. Bandwidth is another
name for channel capacity, and channel coding is an important part of a
strategy for managing bandwidth efficiently.

The notion of channel capacity is very general and can be used to de-
scribe any communications system. Commercial airline traffic supplies an
easily understood example. The travelers on the airplane represent the in-
formation bits and the aircraft is the carrier. The route through the sky
is the channel. In regulated international air travel, airline routes are a
valuable commodity. Increasing the number of flights between two airports
is one way of increasing channel throughput to increase revenues. The ca-
pacity of the channel is determined by how many aircraft can occupy the
route at the same time.

Channel Coding

We will pursue this example further. The number of airplanes that could oc-
cupy the routes between, for example, Boston and London, is much greater
than the number that are permitted to fly, because government regulations
require aircraft to maintain a minimum separation in both space and time.
This minimum distance guarantees reliable air travel. It is a form of channel
coding.

A communications link needs to be reliable. The importance of the
information being transmitted determines how. Reliability is usually mea-
sured by the average bit error rate, i.e., the number of bit errors that, on
the average, are tolerable for the application. For radio communications,
links employing digital data, an error rate of one in every ten thousand bits
may be acceptable. In the case of airplane travel, no error - no loss of life
- is acceptable, so the distance between airplanes in flight is kept relatively
large.

of
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Cars traveling on a road maintain as great an inter-car distance as air-
planes in flight. Less distance between them is required because the road
channel is "less noisy" (events happen more slowly), and the consequences
of an occasional error are usually not catastrophic. The distance between
vehicles, although it wastes part of the channel capacity, is needed to main-
tain "reliable communications."

Channel coding is a sophisticated means of placing distance between
information signals by putting redundancy in the information. This is the
only way to avoid or correct errors that arise from channel noise.

1.2.4 Information Storage Bandwidth: Mathematical
Engineering for Compression

There are two kinds of compression - "lossless" and "lossy".

Lossless Compression

Lossleos c =mpression is sometimes called "arithmetic coding" or "entropy
coding" b- .-ause it never dlestroys information. Lossless compression merely
removes the redundancy in a signal. Since it never destroys information, the
original signal can be exactly reconstructed from the losslessly compressed
version. But most signals do not have very much redundancy. This limits
the effectiveness of lossless compression which, for gray scale images, tends
to produce compression ratios of only 2- or 3- to -1 [44].

Lossless compression is like compressing a gas in a cylinder by means
of a piston: all the gas molecules are still there, and the gas returns to its
original condition when the pressure is released by withdrawing the piston.
The compressed gas requires a smaller volume to store the same number
of gas molecules. The cost of compression and subsequent decompression
when the gas is used is repaid by the savings that are byproducts of the
reduced volume for shipment and storage.

Lossless compression of information works the same way. Information
expressed in digital form as a sequence of bits can be reorganized so that
the same information can be expressed in terms of fewer bits by removing
the redundancy. The compressed format is usually not directly usable;
when the information is used, it will be wanted in its uncompressed form.
The cost of lossless compression and decompression must be repaid by the
savings that are byproducts of the smaller amount of storage or transmission
time required by the compressed information if lossless compression is to be
commercially worthwhile. Lossless compression is used when it is important
to be able to reconstruct the signal exactly; no errors are permitted. The
use of lossless compression for financial data records is a typical application.

S
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The critical difference between compressing a gas and compressing in-
formation is that there is a limit to how far information can be losslessly
compressed. The amount of information in a signal is the number of bits
that are needed to express the information in its most compressed form.
If the signal is compressed further (e.g., by throwing away some of the re-
maining bits), then some information present in the original signal will be
lost.

Lossy Compression

Lossy compression selectively discards less important information from the
signal. This permits much higher compression ratios and often - it depends
on the application - there will be little or no perceptible difference between
the original signal and the signal constructed from the compressed version.
Lossy compression for full color still images can be 30 times as great as
lossless compression without producing significant distortion. This is pos-
sible because images typically contain "noise" and other details that are
subliminal and therefore not perceived by the viewer. Speech, sound, and
imagery can all be compressed by bossy compression to a far greater degree
than by lossless compression.

Lossy compression discards "less important" information. The critical
feature of a lossy compression method is the way it decides which informa-
tion is important. The decision generally depends on the application, but
for sensory data like speech, sound, and imagery, all of which are processed
by people, there are similarities that make it possible to design compression
algorithms that have a common general structure.

1.2.5 Computational Bandwidth: Mathematical Engi-
neering for Manufacturing

Some of the most demanding applications for mathematical engineering are
problems of manufacturing. Shortening product design cycles and improv-
ing the performance of manufactured products are necessary for economic
competitiveness. They directly affect manufacturing costs and the ability to
be responsive to changes in consumer taste, the two short-term factors that
determine profitability. The health and safety effects of products will be-
come increasingly important as products become ever more complex. Other
things being roughly equal, economies and companies that are able to lead
in these aspects will be more successful than those that cannot.

It is not easy to shorten design time and improve product performance
because today's manufactured products are much more complex than those
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of just a few decades ago. From an inexpensive television set to a multimil-
lion dollar gas turbine jet engine, most manufactured products are now too
complicated for old fashioned design procedures. The old procedures cost
too much; they take too long; and they are incompatible with interactive
performance simulation that is necessary to optimize designs for reduced
manufacturing cost and increased quality.

The traditional role of mathematics in engineering design and its new
active role in product operation can be combined by interactively using
computer-implemented mathematical simulations to analyze and improve
product performance. Although the computer is already a principal tool in
many industries, and has been used to make great strides in organizing and
controlling manufacturing processes, its interactive use to optimize product
design and reduce design cycle time is still untapped.

At the heart of the product design process is the ability to represent
the operation of a product by a mathematical process model. The pro-
cess model underpins the ability to simulate performance by "running" the
mathematical model on a computer.

If a mathematical simulation is to be useful for design, it must be accu-
rate and fast; if it is to be practical, it must run on inexpensive computers.
Typically, the most difficult and costly part of mathematical simulation for
manufacturing involves nonlinear processes, like combustion, fluid flow, and
forming metals and plastics. In this context, the mathematical description
usually consists of a collection of partial differential equations that model
the physical properties of the product. The numerical solution of these
equations describes the changes that occur as the product performs its
function.

Although the speed of computers will continue to increase in the coming
years, this, by itself, will not be sufficient to put the power of interactive
simulation in the hands of every product design and manufacturing engi-
neer who could benefit from it. Unless the product is very expensive or
the number of units manufactured is very large, most companies cannot
afford the cost of the powerful computer or supercomputer that would be
needed to provide accurate and timely simulation results if the the current
generation of simulation techniques are used. This means that in a period
of increasing product customization, the vital "middle class" of the manu-
facturing sector that consists of medium sized engineering companies will
not be competitive.

Affordable solutions to the interactive design problem are likely to be
based on a combination of new and more accurate mathematical models for
representing the product's operation, and more accurate and more stable
numerical methods for solving the resulting differential equations quickly
enough to support interactive design solutions. These advances would en-
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able simulations that can reduce the time to solution, be applied to cases
where conventional methods fail, and are interactive and economical.

1.3 Are Breakthroughs on the Way?

Is there a scientific basis for the breakthroughs that will be required to
support active mathematics in complex products and for interactive de-
sign? We believe there is. The mathematical theory of compactly sup-
ported wavelets was discovered just a few years ago, but wavelet numerical
solution of nonlinear differential equations has already demonstrated its
potential, and wavelet-based active mathematics have already shown their
ability to support dynamic bandwidth management for digital communica-
tion, storage, and high quality compression of audio and imagery.

Nonlinear and transient physical phenomena that exhibit nonlinear be-
havior such as combustion processes in an automobile engine, or air flow
over a turbine blade in a jet engine are difficult to simulate. Systems like
these exhibit shock behavior, with turbulence and detailed structure at
many levels of resolution. Conventional numerical procedures require very
fine meshes and very small time steps to insure the accuracy of numerical
solutions, although they do not insure that the numerical procedures will be S
stable, or produce accurate results. Wavelet numerical solutions, however,
are well suited to these types of problems. They are able to capture the
behavior of complex, nonlinear dynamical systems with an accuracy and
speed not possible with known alternative techniques.

In this book we introduce the reader to the ideas that lie behind the
theory of compactly supported wavelets. We relate them to previously
known methods in mathematics and engineering; show how they can be
practically used in a digital signal processing and computing environment,
and illustrate their potential for mathematical engineering by describing
successful applications in bandwidth management.

0



Chapter 2

Good Approximations

"An addition to knowledge is won
at the expense of an addition to ignorance."

-Arthur S. Eddington 1

2.1 Approximations and the Perception of
Reality

Every measurement, whether the naked result of an impression on the hu-
man eye or ear, or the result of a sophisticated measuring instrument, is
merely an approximation. We can know, and our computing machines can
know, only a finite number of decimal places in the numerical representa-
tion of a distance or a weight or a force or a temperature.2 The eye has
limited resolving power, the ear a limited frequency response, and this is
true for all instruments whether biological or "mechanical." This limita-
tion is not merely due to poor "manufacturing technique;" as Heisenberg's
Uncertainty Principle tells us, it is inherent in the essence of things. Life
and the universe depend on approximations. And so, too, does technology.

The certainty of error in every measurement and every physical inter-
action emphasizes the importance of knowing how accurate a particular
approximation happens to be. If an approximate value is accurate enough
for the purpose in hand, it is "good." Other things being equal, a bet-
ter approximation is preferred to a worse one. How good is a particular
approximation? For a fixed expenditure of computational resources, mea-
surements and analyses expressed in ternm of compactly supported wavelets

[o10]2 t follows that every measured or explicitly computed mnuber is a rational mrnber.
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Figure 2-1: Continuous ramp transient.

give better approximations to speech signals, turbulence and other tran-
sient or localized phenomena than conventional methods. Here is a simple
example: consider a time series that describes a quantity that is zero for a
long time; ramps up linearly to a maximum value; and falls instantaneously
to zero where it remains. Such a signal is shown as the smooth curve in
figure 2-1.

Suppose this signal is sampled at 55 uniformly spaced times. The sam-
ple measurements can be used to construct a Fourier series expansion of
the signal; if all 55 measurements are used, then the Fourier series will
have 55 terms and it will perfectly reproduce the measured numbers. It
will also interpolate values for unmeasured instants. However, if fewer than
55 terms are used, then the partial series will produce an approximation
of the measured values. The figure shows the approximate values pro-
vided by a 27 term Fourier expansion. Figure 2-3 shows a 27 term wavelet
series approximation. These figures display two important properties of
wavelets: Wavelet series approximate abrupt transitions much more accu-
rately than Fourier series and Wavelet series perfectly reproduce constant
measurements. Wavelets produce better approximations but a wavelet ap-
proximation doesn't cost more to calculate than an ordinary approximation.

0
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Figure 2-2: Fifty-five point ramp transient: 27 term Fourier series approx-
imation.
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Figure 2-3: Fifty-five point ramp transient: 27 term D3 wavelet series low

pass approximation.
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2.1.1 Efficient Mathematical Models

We can expect wavelets to provide better approximations when the data
exhibit localized variations, but when the data vary regularly and smoothly
other more traditional representations may be better. For instance, if a
violin string is plucked, most of the energy will be concentrated near the
plucked point for a short period of time - here, the wavelet series will
provide an accurate and economical approximation. But as time passes,
the energy of the pluck will spread along the string and be distributed
among the normal modes of oscillation, which are sinusoidal. After a while,
a Fourier series will provide a more economical approximation.

This example shows that it is important to know how to use wavelet
approximations and traditional approximations in the same problem.

Compact support

One reason that wavelets provide good approximations for transient or
localized phenomena is that each basis function - each term - in a wavelet
series has compact support and, no matter how short an interval is, there
is a basis function whose support is contained within that interval. The
intuitive meaning of this property is that compactly supported wavelet
basis functions can model local behavior efficiently because they are not
constrained by properties of the data far away from the location of interest.

This feature of compactly supported wavelets also makes it easy to con-
centrate computation where the activity is high.

Compactly supported bases lead to inherently parallelizable algorithms.
Aware's collaborators at Rice University recently demonstrated that wavelet
methods for the numerical solution of a class of nonlinear partial differential
equations could be run on a massively parallel computer with little change
in the algorithm or program design. They led to an efficient use of the
parallel computer, and an accurate solution of the problem.

Orthogonality

The terms in a wavelet series are orthogonal to one another, just like the
terms in a Fourier series. This means that information carried by one
term is independent of information carried by any other term: there is no
redundancy in the representation.3 This is good because it means that

3 More precisely, there is no redundancy with respect to the L2(R) norm in terms c
which orthogonality is defined. There may be other types of relationships among the
coefficients of a wavelet expansion that would permit a further reduction of redundancy,
but they would lie outside the realm of square-integrable orthogonality. This is a general
question that has nothing in particular to do with wavelets.

S
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neither computing cycles nor storage are wasted as a result of coefficient
redundancy when a wavelet series is calculated or stored.

Multiresolution representation

Biological sensory systems, such as vision, and many physical systems are
organized into "levels" or "scales" of some variable, just like organizational
and economic structures, and the positional notation of arithmetic. In
this sense, a multiresolution or scalable mathematical representation may
provide a simpler and more efficient representation than conventional math-
ematical representations. We delve more deeply into this basic concept in
the next chapter.

2.1.2 Computational Complexity

Cnmputational complexity is a measure of the number of elementary oper-
ations need to solve a computational problem. Computational complexity
iF indirectly a measure of time to solution for a given computing system
as well as a measure of the cost of solution. Therefore the computational
complexity of the numerical solution of a problem is a critical factor in
deciding whether a proposed solution method can be practical.

Problems of design or active operation use measured data as an input. If
the problem requires N data points, then the computational complexity of a
solution must be at least O(N), since reading the data into the computer is
already an O(N) operation; this is the best that can be done. Conventional
rr athematical operations, such as matrix multiplication or calculation of
toe finite Fourier transform, have been superseded by "fast" algorithms
that make their use practical. Thus, the complexity of the fast Fourier
transform is only O(N log N), compared with O(N 2 ) for the conventional
finite Fourier transform.

We shall see that wavelet transform operations are typically - O(N) -
asymptotically the best that could be hoped for.

It is possible to reduce computational cost without reducing compu-
tational complexity. If one method produces much better approximations
than another, then fewer data points will be required to provide the de-
sired solution accuracy. Reduction in the quantity of data is often a more
important practical factor than the abstract complexity of a calculation.

0
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2.2 Information Gained from Measurement

Immediately 4 upon its invention, the digital computer was recognized as an
entirely new kind of machine whose major influence would be on information-
intensive activities - the life of the mind - rather than on energy-intensive
activities, which had been the case for all previous machine inventions. In a
prescient analysis in 1948 of the potential effect of computers on the social
and economic structure, Norbert Wiener ([73], pp.27-28) drew attention to
the distinctive and unprecedented role of this machine at the level of mind.

Today, the digital computer dominates the scene in psychology and
biology as the principal metaphor for the operation of the brains and some
physicists and computer scientists have argued that the physical universe
itself can best be understood and modeled as an enormous digital computer
whose evolution represents the working out of a program the source and
purpose of which remain unknown.

Thus it is not surprising that the word information has taken on special
meanings in all phases of everyday life as well as in science and philosophy:
we speak of and hear about information age, information glut, information
management, information overload, information society, information tech-
nology, information theory, and information workers without end. These
modifications of vocabulary merely reflect the now universally recognized
truth that information is a fundamental constituent of the world that in-
teracts with such traditional and immediately physical constituents such as
the mass and charge of material bodies, and space and time as the stage on
which natural philosophy plays [49]. Nevertheless, philosophers and -cien-
tists no less than economists still have great difficulty in identifying exactly
what information is, how it interacts with the other constituents of physical
or societal reality, how to quantify it in the national as well as the natural
accounts, and even how to recognize it.

In this section we will examine the role of information at the fundamen-
tal level of measurement, which is the interface between science and experi-
ence, and calculation, which we think of as the interface between measure-
ment and mind. We shall see that a multiresolution or scaled representation
is the essential ingredient for extracting information from observations.

4 This section is a modified version of [50].
5This metaphor has been implicitly adopted by art histoians in their analysis of the

role of the psychophysics of vision. A standard presentation is Gombrich [16].
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2.2.1 Digital Computers and Measurement

A binary digital computer deals directly with dyadic rational numbers, that
is, with numbers of the form

q

where q is odd or zero and n is an integer. Moreover, any operation that
a digital computer can perform can be thought of, or encoded as, a finite
sequence of bits - of zeros and ones - and hence as a particular binary
expansion of a dyadic rational number. Thus the entire realm of digital
computers is limited to the ring D of dyadic rationals. 6 Moreover, every
reading produced by a measuring instrument is a rational number and, if
the instrument is constrained so that the bits in the binary expansion of
a measured value can be read off one by one, then the instrument only
produces dyadic rationals' Thus, direct observation of the physical world
can only produce numbers of exactly the sort that a digital computer can
use.

Until recently, when one spoke of using mathematics to model natural
phenomena, one meant the calculus. The ideas that underlie the calcu-
lus were systematically introduced in the late seventeenth century and the
principal properties of derivatives and integrals were obtained by means of
informal arguments that employed infinitesimal quantities. Leibniz recog-
nized that the introduction of infinitesimals implied the existence of ideal
infinitely small and infinitely large numbers that share the properties of
the ordinary real numbers and, although mathematicians were unable to
justify the use of these ideal numbers - indeed, the real numbers themselves
were not fully understood until the late nineteenth century - infinitesimals
were freely used in research and in mathematics education, as they still
tend to be used in engineering and other branches of applied mathematics

6A ting is a mathematical structure in which addition, subtraction and multiplication
can be performed. If division by every non-wero element i also possible, mathematicians
call the structure & field. The reader will note that a reciprocal of a dyadic rational is
not in general a dyadic rational. This is why the numbers known to & computer do not
form a field. A rational number is one of the form m/n where in and n are integers and

n 0 0. The set of all rational numbers, denoted Q, is the smallest infinite field and the
rinD is contained within it.

This argument is not strictly correct. The computer can represent an integer by
its finite binary expansion, which is a dyadic rational number. Therefore, an arbitrary
rational number can be identified with the ordered pair of dyadic rational integers that
are the nmnerator and denominator of the rational number in reduced form. Similarly,
algebraic numbers such as v/2, %41-, etc., can be coded by finite sequence of integers,
so they can also be expressed exactly in a digital computer. A measuzing apparatus,
however, cannot usually be arranged to measure the numerator and denominator of a
rational number separately.
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today. As Abraham Robinson [51] observed, "The idea of the infinitesi-
mally small seems to appeal to our intuition." It was not until 1960 that
infinitesimals were put on a sound logical basis by Robinson's introduction
of non-standard analysis, which relies on the modern theory of models in
mathematical logic to introduce a structure that extends the field R of
real numbers to include an infinite hierarchy of infinite and infinitesimal
numbers in a way that insures the validity of first order predicates in the
extended system; cf. [51]. This extension provides a kind of multiresolution
analysis for infinite and infinitesimal quantities.

The kinds of numbers that seem to be needed for the theoretical math-
ematics of the calculus are evidently very different from the numbers that
are produced by direct observation of the physical world: measurements
are not unrestricted real numbers which, like the transcendental v, require
infinitely many bits to specify their binary expansion, and they certainly
are not one of Leibniz' and Robinson's infinitesimals. We appear to be
faced with two unpleasant alternatives: either real numbers (and possibly
infinitesimals) occur in the world but cannot be measured exactly (which
introduces an inherent uncertainty in measurement and in all deductions
based on measurements), or measurements reveal all that there is to know
(so that our mental models, dependent upon the real numbers and perhaps
even upon infinitesimals, are overdetermined: they contain far too many
constraints to accurately reflect the phenomena).

These remarks recall Kronecker's century-old criticism of the "com-
pleted infinite," that nothing could be said to have mathematical existence
unless it could actually be constructed in terms of a finite number of pos-
itive integers. In his view, the rational numbers exist since they can be
represented as the ratio of two integers but transcendental numbers like
w do not exist, since they require infinitely many fractions or operations
for their representation. Kronecker is thus the mathematician in whom
a digital computer can believe. He proposed a program to "arithmetize"
mathematics and eliminate from it all "non-constructive" concepts.8 It is

8 "And if I can't do this," he said, "it will be done by those who cone after me!" ([48],
p. 26). Indeed, beginning in 1907, L. E. J. Brouwer put forward a program of "con-
structivist mathematice" but he made little headway among practicing mathematiciamns,
who were concerned that Brouwer's views would unnaturally and unnecessarily limit the
development of mathematics. More recently, Bishop continued the attempt to Opurge
[mathematics] completely of its idealistic content." Hear Bishop ( [41, p.2):

Mathematics belongs to man, not to God. We are not interested in the
properties of the positive integers that have no descriptive meaning for
finite man. When a man proves a positive integer to exist, he should know
how to find it. If God has mathematics of his own that needs to be done,
let him do it himself.
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indeed time to reixamine the relationship between mathematics and natu-
ral philosophy in the new light provided by the theory of computability and
in terms of the information that calculations and physical measurements
can actually supply.

2.2.2 Uncertainty and Natural Philosophy

During the past 100 years philosophy and science have conspired to teach
us the limits of reason and observation. The set-theoretic paradoxes of
Cantor and the logicians, Einstein's elimination of absolute time and space,
Heisenberg's introduction of uncertainty as the indispensable ingredient
in the microworld, and G5del's proof that mathematics and logic are not
strong enough to prove all that is true, limit what can be known. It may
seem paradoxical that this period of lowered expectations of what can be
known has coincided with the period of greatest expansion and precision of
what is known in mathematics and science. Evidently it is better to know
one's limits than to thrash about in unfulfillable expectation.

It was during this period of intellectual ferment that probability and
statistics entered scientific thinking in a fundamental way. The concepts of
probability and information first influenced each other in the second half
of the nineteenth century in the work of Maxwell and Boltzmann on sta-
tistical thermodynamics, where entropy gain was associated with loss of
information. Boltzmann's distribution for a thermodynamical system in
equilibrium defines an entropy measure which is equivalent to the informa-
tion measure introduced by Shannon [53] three-quarters of a century later
in the context of electrical communication theory.

At the macroscopic level there are circumstances in which it is possible
- in principle, at least - to isolate the information gained from a single
measurement without prior knowledge of, or reference to, probability dis-
tributions. Where quantum phenomena are concerned, the outcome of a
measurement is conditioned by the initial state of the system which, if it
is not pure - not an "eigenstate" - will be represented by a state vector in
Hilbert space, say

O= ca ,

where the 0. are a system of eigenstates and the complex coefficients c.
define a probability distribution {Pa) by the formula

P. = tc-12 •

The number p. is the probability that measurement of the quantum sys-
tem will show it to be in the state labelled o. It is the essence of quantum

0
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phenomena that systems cannot long remain in pure states, so measure-
ments cannot be sharp (von Neumann [39] treats this question in detail).
Shannon's measure of information associated with the discrete probability
distribution {P.r) is

where 'Ig' denotes the base-2 logarithm and information I is measured in
bits. The minus sign is introduced to insure that I is non-negative. If the
state of a quantum system prior to an observation is

jinitial = E cinitialJ,

and its state subsequent to measurement is

then the information gain is

,I- I({(enitial' 12 ) - I({Icf"al 12})
Quantum mechanics asserts that a measurement forces a physical system
into a pure state, which immediately begins to decay into a superposition
of states. Thus the "final" state, by which we understand the pure state in
which the physical system finds itself as an immediate consequence of the
measurement, is one for which exactly one of the coefficients cnal is not
zero, whence nd = , tpp for some state 6. It follows from the definition of
I that I({Ic1naII 2 }) 0 0. Therefore the gain in information is measured by
the quantity

= I({ Icii'i12}) = - lCei'ia 12 lg (IcinitimJI 2)

which is non-negative. This shows that a quantum mechanical measurement
will produce an increase in information as long as the initial state is not
pure.

Uncertainty is the part of life in the quantum world of which we have
no longer any doubt, but it is still not generally realized that quantum
uncertainty is inherited from the mathematical model that is used to de-
scribe the physical phenomena. So-called "conjugate" physical quantities,
such as position and momentum, or time and energy, correspond to linear
functionals that are Fourier transform pairs. It is a mathematical fact that
a function (or functional) z o-4 f(z) and its Fourier transform y 1-4 f()
satisfy the uncertainty inequality (cp. [49], pp.132-139):

1

4'.
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Here the physical interpretation of z and y will be that of conjugate dynam-
ical variables. If a measurement increaes information about one quantum
mechanical dynamical variable by decreasing the uncertainty concerning is
magnitude, then the uncertainty principle requires that the measurement
increase the uncertainty about the magnitude of the conjugate dynamical
variable and thereby produce a corresponding loss of information.

2.2.3 Axioms for Measures of Information Gain

The goal of a calculation is to determine the value of some number within
certain bounds bf accuracy. The information gained from the calculation
is therefore measured by the difference between the information about the
number that was known before the calculation began, and the information
known about the number after the calculation is completed. Since all that
the calculation can produce is some finite sequence of bits of the binary
representation of the number,- the gain in information must be measured
by the new bits that the calculation produces. Indeed, as Wiener [731
may have been the first to observe, the measure of information gained is
just the number of new bits that the calculation produces. This raises an
important problem, for it means that it is impossible to know the exact
numerical value as a "real number" of any physical measurement because
a real number requires infinitely many bits for its complete specification.
Since the measurement of a bit and the calculation of a bit both require en-
ergy, the only way in which a numerical value could be determined exactly
from observations would be if the energy En required to observe the nth bit
in the binary expansion of a number were to decrease sufficiently rapidly
with increasing n that the infinite series , E,, (which represents the total
energy required to observe the number) converged to a finite value. But
the consequences of such an assumption are contrary to experience. Even
if the observed numerical quantity were a rational number - even if it were
the number 1 - there would be no way to verify this by direct physical mea-
surement or observation of the bits of the number's binary expansion. This
is a type of "uncertainty principle" which seems to be more fundamental
and universal than the principle of Heisenberg; indeed, the latter may be a
consequence of it.

At this point we must take stock of where we are and where we want
to go. Our immediate goal is to quantify the information gained from
a calculation, and to understand how the multiresolution structure of the
number system and the measurement process make this possible. Shannon's

OFor comvenience, and without lose of generality, we may suppose that all numbers
are represented in base 2 positional notation.

0
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measure of information will not do for this purpose since there is no natural
way to associate a probability distribution with either a calculation or a
limited number of measurements. But ad hoc introduction of a new measure
of information will not do either. So let us return to first principles and
attempt to axiomatize the properties of a reasonable measure of information
gain, and then derive the quantitative form that information gain must
assume. We follow the discussion in [49].

A prototypical physical measurement consists of determining the length
of a rod by aligning it alongside a ruler. Let the true length of the rod
be denoted by 1, and suppose that the ruler is the real number line sub-
divided by marks in the ordinary way. The "multiresolution" process of
measurement will produce not the true length I but some finite sequence of
bits that can be interpreted as the initial (i.e. most significant) bits in the
binary expansion of some real number. The finite number of bits produced
by the measurement exactly define the binary expansion of some dyadic
rational number. Successive refinement of the measurement (with the aid
of a magnifying lens, perhaps) will lead to increasingly accurate dyadic ra-
tional approximations to 1, but we cannot infer anything at all about the
as yet unmeasured bits. This process of successive refinement should be
thought of as selection of successively smaller intervals of the real line that
contain the number 1. This is the multiresolution step: A measurement of 0
the length of the rod produces a pair of (dyadic rational) numbers 21 and
yj that are the coordinates of the interval containing 1, such that

21 <I< Yl ,

and a second measurement that refines the first produces a pair of numbers
22 and y2 such that

Z1 <22 <I< Y2 < y.

Our task is to determine this gain in information provided by the pair of
measurements.

Since we are assuming that the gain in information depends only on
the measured intervals in which I is contained, we may express the gain in
information as a function of the endpoint coordinates of the pair of intervals:

AI = A(zI, YI, Z2, y 2) •

The coordinates of the endpoints of the measurement intervals depend on
the unit of measurement of the ruler (the numbers XI, Y1,Z2, Y2 will be
different if centimeters or inches are marked) and on where the zero-point
of the ruler is placed alongside the rod, but the gain in information is surely
independent of both. This implies that the function AI that measures

0
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the gain in information must be invariant under the transformations that
correrpond to scale changes, i.e.

t --* at

where a 6 0, and under transformations that correspond to a rigid motion
which shifts the position of the zero point of the scale without changing the
distance between any pair of marks, i.e.

t -. t+b.

The most general combination of these two types of transformation has the
form

t -•- at + b

with a 0 0 and b an arbitrary real number. Let us write this transformation
as t i-. 7,,b(t). The collection of these transformations constitutes the affine
group, and our first axiom states that the function AI that measures the
information gain is invariant - i.e. unchanged - by the action of affine
tr&nqfcrnations:

Axiom 1: For any dyadic rational numbers w, z, y, z and any affine trans-
formation -f, the gain in informaticn satisfies the equation

AIy(tw), Y(z), 'y(y), Y('2)) = AI(w, X, y, z)

Suppose that scientists in two laboratories are racing to be the first to
measure the length I of the unicorn's horn. Both laboratories find that
X1 < 1 < Y1. Proceeding with caution, Laboratory A then finds

ZI <Z 2 < I < Y2 <Y

Emboldened by this result, Laboratory A improves its measurement tech-
nique and obtains the refinement

Z2 < X3 < I < Y3 < Y2.

Laboratory B, off to a late start, throws caution to the winds and, in one
astonishing experiment, finds the estimate

zj < Z3 < I < < YlI .

What is the relationship of the information gains reported by Laboratory
A to the information gain realized by Laboratory B?

0
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Clearly, the gain in information obtained by Laboratory A in its first
experiment is

AIA(Zl, Yl, Z2 , Y2),

and in the second,
AIA(Z, Y2, zya),

for a total gain of

AIA(Z1,YZ2,Y2 )+AIA(Z2 , y2 , z3, Y3) .

The gain reported by Laboratory B is

AIA(zl,Yl,z3,Y3) •

Were the the total gain in information reported by Laboratory A greater
than the gain reported by Laboratory B, then investigations that proceed
by a sequence of small incremental improvements would be preferred, but if
the information gain reported by Laboratory B were greater, then a research
strategy of fewer but more significant experiments would be desirable. Ex-
perience supports reason when it tells us that both procedures produce the
same gain in information. This additivity of information is the content of
our second axiom: 0

Axiom 2:

AI(X1, YI, 4-3, YO) = AI(XI, Y1, X2, Y2) + AI(Z2, Y2, X3, Y3) •

These two axioms imply that the gain in information

AI(I, Yl, zX2 , Y2)

is a function of the ratio (i.e. not of the variables separately)

X1 - Y1
--2 - Y2

that is,

for some as yet unknown function g, and that g satisfies the relation

g(uv) = g(U) + g(V)

0
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for positive numbers u and v.
It is not hard to show that g is the logarithm function."0 If the unit of

information is the bit, then

One important consequence of this formula is that more than one measure-
ment must be made in order to gain information. A single measurement
lacks a standard scale against which information gain can be evaluated. 11

The essential nature of a standard of comparison has been intuitively
understood for a long time. Circa 1630 Constant~in Huygens, father of the
scientist and secretary to the first stadholder of the Dutch Republic, wrote
in his Autobiography (See [3], p. 1 8 ):

... the estimation which we commonly make of things is vari-
able, untrustworthy, and fatuous insofar as we believe that we
can eliminate every comparison and can discern any great dif-
ference in size merely by the evidence of our senses. Let us in
short be aware that it is impossible to call anything "little" or
"large" except by comparison. And then, as a result, let us
firmly establish the proposition that the multiplying of bodies
... is infinite; once we accept this as a fundamental rule then
no body, even the most minute, may be so greatly magnified
by lenses without there being reason to assert that it can be
magnified more by other lenses, and then by still others, and so
on endlessly.

Leone Battista Alberti ([3], p.22), writing circa 1450 on painting and sculp-
ture, had already acknowledged the relativism of measurement :

[Properties] ...which philosophers term "accidents" because they
may or may not be present in things, - all these are such as to
be known only by comparison.

and continued with the perceptive gloss that

t 0Rielatively weak technical mathematical assumptions, such as continuity of g, are
required to prove this result. Without any additional assmnptions one can prove that
V is completely determined by the numbers {g(pt) : I < k < oo), where the pk run
through the prime nmbers, and where the values 9(p•) can be chosen arbitrarily. Thus

i is a kind of "generalized" logarithm.
11[49] shows how Shannon's formula for information appears as the measure of the

average gain in information produced by & collection of measurements.

0
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As man is best known of all things to man, perhaps Protagoras,
in saying that man is the scale and measure of all things, meant
that accidents in all things are duly compared to and known by
the accidents in man.

Thus far we have considered the information gained from an observa-
tion or a measurement. It has been implicitly assumed that something "out
there" is being observed or measured, so theories and models of external
reality play some role in what can and cannot be measured. An analysis
of the information gained by mental activity leads to similar conclusions.
By far the simplest and most clear-cut case concerns mathematical mental
activity, which is precisely defined and easily described. When the informa-
tion gained from a calculation is considered, it makes no difference whether
the calculation is performed entirely in a mind, or is assisted by paper and
pencil, or is actually performed by a machine. This is the bridge between
philosophical considerations of the relationship of information to measure-
ment, and the theory of compactly supported wavelets, which is a method
for extracting information by means of mathematical calculation.



Chapter 3

Wavelets: a Positional
Notation for Functions

3.1 Multiresolution Representation

Multiresolution representation is a new term for a very old idea. It describes
what is also called a hierarchical structure. Hierarchical structures organize
information into categories called levels and usually arrange it so that the
higher in the hierarchy a level is, the fewer the number of members it has.
Hierarchies are familiar in social and political organizations: a country has
many states; a state has many counties; a county has many towns. The
italicized words are names for levels in one way of organizing political sub-
divisions in a hierarchy. A hierarchical or multiresolution structure provides
different ways of grouping things to reveal aspects of structure that depend
on the scale of activity. Recalling the discussion of the previous section, we
see that a multiresolution structure provides the necessary mechanism for
extracting information from a sequence of measurements or calculations.

In the biological realm, the human vision system employs several mul-
tiresolution structures. One design objective of the vision system is to pro-
vide wide aperture detection (so events can be detected early) and high res-
olution detection (so that the detailed structure of the visual event can be
seen). Since the vision system has limited bandwidth, the Uncertainty Prin-
ciple tells us that these objectives are fundamentally incompatible. Nature
has evolved a multiresolution solution which allocates the limited available
bandwidth in two parts: the bulk of the retinal receptors are arranged as
a wide aperture but low acuity sensor (the "principal part"), while a small
fraction of the sensors form the fovea, which has much higher resolution but

47
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Figure 3-1: The basic step of a multiresolution analysis

Principal Part

Input --

Residual Part

a narrow aperture (the "residual part"). This system provides multireso-
lution information because, after detecting peripheral motion, we tarn our
gaze to see the details. The vision system trades time for bandwidth. This
is a classic engineering trade-off that must be made in many problems. As
we shall see, wavelet mathematics systematizes the trade-off process.

Mass production is another example of a multiresolution or hierarchi-
cal structure that increases efficiency by partitioning a task into principal
and residual parts, and repeating that process until only simple tasks re-
main. Hub-and-spoke airline route structures illustrate yet another way
multiresolution analysis can provide functional economies.

The concept of multiresolution analysis underlies the theory of wavelets.
The idea is simple and ancient: separate the information to be analyzed
into a "principal" part and a "residual" part. In applications to signal
processing the residual part should be thought of as primarily "high pass"
and the principal part as primarily "low pass." ' For other applications the
interpretation of "principal part" and "residual part" will be different.

The process of decomposition can be applied again to one or both of
the parts. If it is repeatedly applied to the low pass part, this process is
exactly the one introduced by S. Mallat [34] in 1987 to calculate the wavelet
expansion of a sequence of discrete numbers (cp. figure 3-1).

1 The reson for this identification is that there are more "high frequency" state than

"low frequency" states, so reduction d complexity anunts to selection d & suitable
"low pas" princpal part.
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Figure 3-2: Mallat tree of cascaded filters for m = 2.
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3.2 The Democratization of Arithmetic:
Positional Notation for Numbers

The most important example of a multiresolution analysis is positional no-
tation for numbers. Positional notation, first introduced by Babylonian
mathematicians about 4000 years ago for base 60, is probably the most
important single discovery in mathematics. Before the invention of posi-
tional notation, the computational complexity of arithmetic was too great
for a part-time "amateur" to master; arithmetic was the province of trained
specialists. Positional notation democratized arithmetic.

Positional notation made arithmetic easy; anyone could learn it. Po-
sitional notation facilitated other mathematical discoveries, including cal-
culus, and thereby ultimately made science and engineering and finance
possible. Think of using Roman numerals to balance a checkbook or design
a bridge! Positional notation also makes the telephone system practical,
because without it telephone numbers and the switching circuits that use
them would be too complicated and costly to support a large number of
subscribers. In fact, the largest numbers that people freely use in daily life
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Figure 3-3: Complete binary tree of cascaded filters for m = 2

LO

HI

are telephone numbers.2

Consider "base 2" positional notation from the perspective of multires-
olution analysis. The set of integers Z can be separated into subsets of even
integers and odd integers. Each positive integer n can be written in the
form

n = 2k + to,

where r is the remainder after division by 2 and 2k > 0. We shall say that
2k is the principal, or low pass, part of n and that r is the residual, or high
pass, part. The value of the residual part (0 or 1) determines whether n is
even or odd. Repetition of this procedure on the successive low pass outputs
produces a sequence of high pass residuals3 rN, ... , rl, r0 that correspond
to the formula

n = ri2. (3E1)
i>o

The sequence of bits rN ... rtro is the binary expansion of n.
The powers of 2 that appear in eq(3-1) can be thought of as basis vectors

labelled by 2'.
Anticipating later needs, we will introduce a function to label the basis

elements: consider 1
140( = -.

2 An international telephone, such as 011-I-617-577-1700, is about as large as the grow

domestic product of the United States ($1,116,175,771,700 = $1.1 x 1012 -• 1 trillion).
3We list the residuals from right to left.
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It is a trivial fact that i0 satisfies the scaling equation4

•o(z) -- 2•o(2z).

Now label the basis element 2i by writing using the formula 2' = •o(1/2').
Successive basis vectors {fo(2i)} are chained together by the scaling equa-
tion

jp(1/2'+1) = 21p(2(1/2I+1)) = 2(p(1/ 2 '), (3-2)

which is a complicated way of writing 2+' = 2 .2', but a way which puts
in evidence the essential property of the basis vectors, which is that they
establish a multiresolution representation for a number. In terms of these
basis vectors, a general expansion with integer coefficients takes the form

00

r =
i=O

and the sum is a dyadic rational number r. This series is in normal form
if the coefficients ni are 0 or 1. The "scaling equation" eq. (3-2) is a
prescription for reducing the general series to its normal form, and the
normal form is exactly the binary expansion of n. The reduction works
this way. Consider an arbitrary expansion n = E l.-_Onj(1/2i). Since

S20 = 1, we can write no = nojp(1). Separate no into its principal
and residual parts:

no = 2k 0 + ro.

and use the scaling equation to find

noip(l) = (2ko+ro)p(l)
= 2ko0(1)+rojp(l)

= /op<l/2) + rojp(1).

Combine terms

k0 (1/2) + na1p(1/2) = (ko + ni)jp(l/2),

and apply the scaling equation again. Repetition of this process produces
the normal form for the series, i.e. the binary expansion of n.

The reader should think of wavelet analysis as doing for the represen-
tation of functions what positional' notation does for the representation of
numbers. The wavelet series represents a function in a way that displays
the information content that each term of the series provides. This is the
basic reason that the simple idea of wavelets is producing a rapidly growing
circle of practical consequences.

'I In thi form, we will be abie to mee the relaiomeW between binary positamral notatiom
and "rank 2" wavelets introduced in the next campter.
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3.3 Music Notation as a Metaphor for Wavelet
Series

A musicial instrument maker uses the physical properties of materials to
build instruments that shape sound. Implicit in making and playing an
instrument is a psychoacoustic model of hearing that describes - in mathe-
matical terms - how people perceive sound, and an implicit cognitive model
of beauty and meaning that governs which sounds are worth hearing.

Music notation is a kind of graph for representing a simplified version
of the acoustic waveform that causes us to hear music. The horizontal axis
of the graph represents time. The vertical axis is arranged like a piano
keyboard - equal distances on this" axis correspond to equal changes in the
apparent pitch of a tone, not to equal changes of the physical frequency of
vibration of the resonating instrument that created it.

In classical western music the unit of measure of pitch is the octave.
Pure tones spaced an octave apart have frequencies whose ratio is 2:1.
This measuring scheme reflects properties of the ear, not of the instrument.
The audible frequency range is partitioned into octaves, and each octave is
further divided into whole tones and semitones. Thus the octave defines a
scale in terms of which the entire range of frequencies is partitioned.

This scaled system is a multiresolution analysis of the pitch of tones
whose units are naturally related to the human ear that senses sound. In
this system, the scale in which the pitch of a tone is measured is proportional
to the logarithm of the frequency of the tone. The factor of proportionality
is not fixed; different orchestras prefer factors that are similar but not
identicai.

Musical notes placed on the score have a pitch coordinate and a time co-
ordinate. The pitch coordinate specifies the fundamental tone to be played
by the musician. The time coordinate specifies when the musician should
start to play the tone. The shape the note symbol indicates how long it
should be played. The score does not specify how loud each played note
should be, but the composer may provide rough guidance here and there.
The composer may also indicate the instrument which should be used to
play the note; this detemines the harmonic structure of overtones that will
be heard.

3.4 Wavelet Phase Space

Each of these features of music notation has its counterpart in the wavelet
representation of a function. When a function of time is represented by
wavelets, the coefficients of the wavelet series correspond to the notes.
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Figure 3-4: Diagram of wavelet phase space with keyboard.
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Each coefficient c,,k is indexed by two integers. The term in the wavelet
series with this coefficient is Cj,kPjJ,&(z), where Itj,k(Z) is the wavelet basis
function.5 . The numerical value of the coefficient has a physical meaning:
it is the amplitude of the signal, and like the amplitude of a tone, Icj,kl2

represents the energy carried by the basis function Ojk(z). The integer j is
called the scale or level; like musical pitch, it is not a frequency but more
like the logarithm of a frequency. The musical octave corresponds to the
multiplier 2 of the wavelet multiresolution analysis.

The index k describes the time interval during which the energy rep-
resented by the coefficient acts. The ratio k/2J is the onset of the action,
and the effect of the energy represented by the coefficient lasts for a time
proportional to 1/2i units6 .

The wavelet representation contains all the information necessary to
reconstruct the sound waveform.

5 The wavelet function 0,,a(z) will be defined in Chapter 4
6The constant is proportional to the length of the support of wavelet scaling function,

which depends on the choice of the wavelet basis, just as the resonance properties of &
tone depend on the instrument that made it.
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Figure 3-6: Wavelet phase space.
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Figure 3-7: Phase space representation of an impulse function; Energy for
D3 wavelet transform.
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Figure 3-8: Modulus of the Fourier transform of the scaling function for
the non-separable 2-dimensional Novon Haar wavelet matrix.
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Chapter 4

Wavelet Theory

4.1 Comparison with the Fourier Transform

Three types of Fourier transform appear in scientific applications: the con-
tinuous, the discrete and the finite. The types are classified according to
whether the values of the Fourier transform are continuous, discrete, or
finite variables. These classes correspond to a theoretical continuous model
of a process; to an infinite sequence of idealized discrete measurements; and
to the case where only a finite number of measurements are available, which
is the one that actually occurs.

Corresponding to each type of Fourier transform is a type of wavelet
transform. In this section the types of Fourier transform and the corre-
sponding types of wavelet transform are compared to motivate the mathe-
matical definitions in the next section.

Table 4.1: Three types of Fourier Transform

Type Domain Range
Continuous R R
Discrete R Z
Finite ZA(m) Z/(m)
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4.1.1 The Continuous Transform

The continuous Fourier transform is a unitary transformation of the space
L2 (R) of signals with finite energy.' The continuous Fourier transform is2

i(y) := e- 2""yf(x)dz (4-1)

and the inverse transform is

f(z) = f-00 e2 l"'rj(y)dy" (4-2)

The Fourier transform is a function of the continuous variable y; if z is
interpreted as time, then y is interpreted as frequency.

Corresponding to the continuous Fourier transform is the continuous
wavelet transform

MAf)U, V) 10 u (x)dz , (4-3)

with inverse

(z) = 2- j oo 1 )- W(f)(u, V)dvdu (4-4)

The analyzing wavelet 0 plays the role of the exponential function; for each
choice of analyzing wavelet there is a distinct continuous wavelet transform.

The wavelet transform is a function of two variables. 1/v is a variable
analogous to frequency, and the ratio u/v has the same dimensions as z;
thus, the wavelet transform is a function of position in the time-frequency
"phase space."

However important it is for theoretical purposes, the continuous Fourier
tranform is never used in practical applications for two simple reasons: oh-
served signals are only known for intervals of finite duration, and the For rier
integral defined on the entire real axis cannot be efficiently calculatei. For
the same reasons, the continuous wavelet transform is of theoretical but not
practical importance. For the analyzing wavelet kernel 0, it is even more
difficult and costly to compute the double integral in the wavelet transform.

1 That is, complex valued functions of a real variable that are square integrable with

respect to Lebesgue measure.
2Thi formula assumes that I is antegrable with respect to Lebesgue measure. Funo.

Lioma that are not integrable ae also important.

0
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4.1.2 The Discrete Transform

The discrete Fourier transform is the relationship between a periodic func-
tion f E L2([0, 1]) and its Fourier series coefficients, viz.,I'

C "- e-2hinf(z)dz. (4-5)

Its inverse is the Fourier series expansion

f(Z) = E Cne 2r'in. (4-6)
nEZ

The discrete Fourier transform is the function c : Z -. C. From it, one
can construct the short time Fourier transform, which is the collection of
Fourier series expansions of a function f : R --. C successively restricted to
the intervals [n, n + 1], where n E Z.

Let m > 1 be an integer. The discrete wavelet transform is defined by
the formula

ini'" := 'W12 r b tP ('nJ - k)f,(x)dz, (4-7)

where j, k E Z. The inverse transform is the wavelet series

f(X) = F Z ct,,k,•fl 2  (m'z - k). (4-8)
jEZkEZ

The wavelet series coefficients cj,k are the values of the discrete function
(j, k) o--* cj,k where c : Z x Z -. C. The wavelet function v satisfies certain
conditions that will be described in section 4.2.

4.1.3 The Finite Transform

Let m be a positive integer and denote by Z/(m) the set {0, 1,... ,rn - I}.
The finite Fourier transform is the unitary linear transformation

v :=- E exp (-2rikl/m) fv (4-9)
mEZ/(m)

that converts the mr-dimensional vector v E C't into the vector 6 E Cm.
Its inverse is the finite Fourier series expansion

vk:- E exp (2wrikl/rn) 0,. (4-10)
mEZ/(m)
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Table 4.2: Three types of Wavelet Transform

Type Domain Range

Continuous R R x R+
Discrete R Z X Z
Finite Z Z x Z/(m)

The vectors v and i should be thought of as functions v : Z/(m) --* C and
S: Z/(m ) --+ C defined on the finite set Z/(m ).

Corresponding to the finite Fourier transform is the finite wavelet trans-
form of an arbitrary sequence f : Z .-. C, defined by 3

1:= I- f(n)Zr n, (4-11)

with inverse

(n) ' (4-12)
O<r<m kEZ

In these formulae m is an integer greater than 1 and a = (at) is a wavelet
matrix of rank m. Wavelet matrices and their rank are defined in the next
section.

4.2 Mathematical Definition

4.2.1 The Basic Ingredients

In 1988 Ingrid Daubechies, a Belgian mathematician working at the Courant
Institute of New York University, discovered a far-reaching generalization
of the compactly supported orthonormal basis introduced by Alfred Haar
in 1910 [19]. Daubechies' generalization - the compactly supported scal-
ing functions and wavelets - are a new class of functions with remarkable
advantages for analysis and practical computation.

The simplest Daubechies scaling function and its associated wavelet are
illustrated in figures 4-1 and 4-2. Each of these unusual functions, whose
serrated graphs suggest a connection with fractal curves, has support of
length 3 units; outside that interval, each function is zero. Both functions
are continuous, but neither is differentiable.

3We will generalize to negative m in Chapter ??.
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Figure 4-1: The D2 scaling function io (m = 2,g = 3).

From these functions an orthonormal basis for all signals that have finite
energy or are the sum of a finite energy signal and a signal that has locally
finite energy can be built by the simple construction described in section 4.

The fundamental building block of wavelet theory is the wavelet matrix.
A wavelet matrix is an m x mg array of real or complex numbers, where
m > 2 and g >: 1; m is called the rank of the wavelet matrix and g is called
its genus. The wavelet matrix can be thought of as a rectangular array
which consists of g square arrays; each square array is an m x m matrix. If
g is finite the rows of the wavelet matrix are finite dimensional vectors.

The rows of a wavelet matrix and the infinite collection of vectors formed
from them by shifting each row a multiple of m places either right or left
forms an orthonormal basis that can be used to express any discrete func-
tion. This expression is the wavelet matrix series for the discrete function.

Using the wavelet matrix, a basis consisting of wavelet functions can
be built for the space of square integrable functions on the real line -
i.e., functions that represent signals having finite energy. The relationship
between the wavelet matrix series for functions of a discrete variable n e Z
and the wavelet function series for functions of a real variable z E R is the
key to the success of wavelets in mediating between physical models of a
process and the discrete sets of numbers that come from measurements.

Each row of the wavelet matrix can be thought of as a vector whose
components are the tap values of a finite impulse response ("FIR") digital
filter; this is the source of the connection between wavelets and digital signal
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Figure 4-2: The D2 wavelet • (m = 2, g = 3).

processing.

4.2.2 Ways to Increase Spectral Resolution

Suppose that a signal is measured at equally spaced intervals at a rate of
m samples per unit time.4 It is often important to represent the campled
signal in terms of its spectral content. For a function, this is accomplished
by the Fourier transform, which converts time information to frequency
information.

The theory of wavelets reconciles two fundamentally different approaches
to increasing the spectral resolution of a digital filter. Conventional digital
signal processing employs an m-band single phase perfect reconstruction
filter represented by a unitary m x m matrix of numbers to "block trans-
form" digital input data. The numbers in each row of the matrix are the
values of the taps of a correlator. The block transform trades the time
resolution of the input signal for spectral resolution (relative to the par-
ticular polyphase filter) of the output. The larger m is, the greater is the
time resolution of the input, and the greater the spectral resolution of the
transform output. Typically, the polyphase filter is successively applied
to non overlapping sequences of m input data points, so that the result
is a succession of "block transforms" of the input datastrearn. Examples

4 In the limit m -. oo we shall think of this as continuous sampling.
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of such single phase block transforms are the Finite Fourier Transform,
the Discrete Cosine Transform, the Hadamard Transform, the Chebyshev
Transform, etc.

Wavelet digital signal processing employs an m x mg perfect reconstruc-
tion filter where g > 1 and the matrix is "paraunitary." The wavelet matrix
filter is applied to sequences of mg input data points, which are successively
shifted through the filter, m points at a time. If g > 1, the result is a suc-
cession of "overlapping transforms" of the data. Since the correlators that
correspond to each row of the wavelet matrix have mg taps, these filters
can be very long and their spectral resolution can be correspondingly fine.
Since the wavelet filters are shifted through the data by only m data points
at a time, time resolution is not entirely lost.

Each of the m outputs of a wavelet matrix filter can be employed as
the input to another wavelet matrix filter which further refines the spec-
tral resolution of its input. Repetition of this construction produces a tree
of wavelet matrix filters that can be tailored to particular requirements.
The filters can be different and the tree need not be complete. The re-
sult of applying the tree of filters to a stream of data is a multiresolution
representation for the data.

When the wavelet matrices are arranged in an array according to their
rank m (equal to the number of output bands) and genus g (equal to the
length of the correlator filters measured in multiples of m taps) an ar-
rangement like Table 4.3 results. The conventional block transforms are
arranged in the first column, with spectral resolution increasing with m.
The wavelets discovered by Daubechies [9] (corresponding to wavelet matri-
ces for which rn = 2), are arranged in the first row, their spectral resolution
increasing with g. The remainder of the array is largely terra incognita but
a few special cases have been previously investigated. The general theory
of wavelets provides a systematic approach to investigating this territory,
and principles for employing orthonormal overlapped perfect reconstruction
filters as primitive elements in the design of very large filters.

The theory of wavelets is also a mathematical theory that establishes
a new class of relationships between representations for discrete functions,
i.e. functions such as digitally sampled signals defined on a lattice (say
Z) and functions defined on the real line R. The discrete part of the the-
ory is essentially algebraic - this is the theory of wavelet matrices. The
"continuous" part of the theory (by which we mean the theory of wavelets
for functions defined on continua like R) is essentially function-theoretic.
The relationship between the two provides a sturdy bridge between scien-
tific models for physical phenomena and the necessarily discrete processes
of measurement and computation that underlie engineering -!nalysis and
design.
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4.2.3 Rank m Wavelet Matrices

Let rn and g be positive integers with vi > 1. A wavelet matrit of rank vi
and genus g is an m x mg matrix of complex numbers,a0o ... ... ... a0sl

a:= : (4-13)

a- . .  . . . . . .. . . ..  mg-i

which satisfies the wavelet scaling conditions

= mCf',.61,, (4-14)

k

and

La= m6"°. (4-15)
k

The set of all wavelet matrices of rank m and genus g with matrix entries
drawn from a ring or field Y is denoted WM(m,g; Y). 7 will be omitted
when it is evident from the context.

The quadratic conditions eq(4-14) assert that the rows of the wavelet
matrix, when considered as vectors, have the common length vm; that
distinct row vectors are orthogonal; and that distinct row vectors remain
orthogonal when shifted relative to each other by multiples of rn elements.
This last property is responsible for the overlap of the support of the wavelet
basis functions when g > 1.L

The linear conditions eq(4-14) distinguish the first row of a; it is called
the "scaling vector." In a digital signal processing context, it is also called
the "low-pass" filter because, when the rows of a are employed as taps
for m correlator filters, the dc part of a digital signal is contained in the
output of the low-pass correlator. The remaining mn - 1 rows are said to
be "high-pass." If the linear conditions are not satisfied, then dc is passed
through some linear combination of the corresponding correlator filters and
the filter is "paraunitary."

The matrix ('k ar+,nk), 0 < r, s < m is a wavelet matrix of genus
g = 1; it is called the characteristic Haar wavelet matrix associated with
a. Figure 4.2.3 associates wavelet matrices organized by rank and genus
with the types of problems that they can be used to solve. We shall have
more to say about the relationship between problem classes and the rank
and genus parameters when we study wavelet applications in Part III.

5The condition is vacuous when g = I.
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Table 4.3: Conventional digital signal processing transforms within the
framework of the arbitrary rank wavelet theory (m=rank, g=genus of
wavelet transform and Dg=Daubechies' wavelets of genus g).

U11I g -1 2 3[ ... I g I -]

m=2 Haar D2 D3 ... Dg

WM(8, 1)
8-pt DCT
8-pt FFT

8 8-pt Hadamard WM(8, g)
8-pt Chebyshev

8-pt Slant

m WM(m, 1) WM(m, g)

00 WM(oo, 1) L WM(oog)
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Figure 4-3: Typical transform application domains within framework of
the arbitrary rank wavelet theory (m = rank and g = genus of wavelet
transform.
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Wavelet matrices and wavelet bases can be defined for multidimensional
signals; cp. Lawton and Resnikoff [31].

4.3 Examples of Wavelet Matrices for m = 2

Rank 2 wavelet matrices are the most important special class. For this case
an abbreviated and specialized notation is useful. If

a ao, a, ... , a2,-l g 1(4-16)
-a = b0, bi, ... , b2 -, g-1 ) I

is a rank 2 wavelet matrix of genus g, then the first row of a is said to be a
scaling vector. A scaling vector can always be completed to a unique wavelet
matrix whose second row is determined by the choice of characteristic Haar
wavelet matrix. The formula

bk = a2,-l-k

corresponds to the Haar wavelet matrix

This is the selection that we will make in what follows.

4.3.1 The sinc Wavelet Matrix (m = 2, g = oo)

The sinc wavelet matrix of rank m = 2 is an example of a non compact
wavelet matrix, that is, a wavelet matrix for which g - oo. It is defined by

asinc :=(aor)

where

o I if k=O
afk 0 else
0 2 (--1)k

a2k+ - 2+ 1'

2 (-2)k-1
2 r 2k-1 s

1 f -1 if k= O
a•k+1 - 0 else.
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Gregory's formula 00, (-lpk

E 2k+ I

implies that a i,, satisfies the linear wavelet conditions,

X(a.nc)- 1 -

The orthonormality conditions are a consequence of Euler's formula

7r2 00° 1

k=O

4.3.2 Real Wavelet Matrices for (m = 2, g = 2) and
(m = 2,g = 3)

A real valued wavelet matrix of rank m = 2 and genus g < 3 is determined
by its scaling vector (the low pass row) and by which of the two possible
real characteristic Haar wavelet matrices of rank two is selected. The six
coefficients of the scaling vector can be expressed in terms of two continuous
parameters of and P3, each of which varies in the interval [0, 2N). After
taking into account identifications - i.e., parameter pairs that correspond
to the same scaling vector, it is seen that the parameter space can be
identified with a pinched two dimensional real torus. Aware's logo (see
figure 1) is a square that can be rolled up to become a torus which, when
the diagonal from lower left to upper right is "pinched" to a point, becomes
the parameter space.

The Haar wavelet matrix is the only wavelet matrix of genus g = 1; it
corresponds to the pinched point. For wavelet matrices of genus g = 2 or
g = 3 the equations that express the coefficients in terms of the parameters
are:

a2 = 1/2(l+V2cosa);

a3 = 1/2(l + V-sin o);

p = 1/2(l/-a2)2+(0-a0)2;

a00 = 1/2(1- a)+pcos,6;
ao = 1/2(1- a3)-+ psin/0;
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0 0 0a 1- a 3  a 5 ;
0o -a4  = -ao0 - a2

4.4 Orthonormal Bases of Wavelet Matri-
ces.

4.4.1 Wavelet Expansion of Discrete Functions

Let f : LZ 1.- C be a complex valued discrete function, and let a be a
wavelet matrix of rank m and genus g < oo. Then f has the wavelet matrix
series

f (e =k > armk+nl (4-17)
o<r<m ke Z

whose coefficients are given by the formula

4r M f (s;) k+n- (4-18)
kE Z

In these formulae the summations are finite sums that can be calculated in

a finite number of steps, so they are suited to practical needs.
If the sampling rate were 1 sample per unit interval, so f :> c, the

formulae would become:

f(n) = rE, ekam+n (4-19)e k = -m E . f ( n) a k+ n

Every discrete function can be expanded in a wavelet matrix series. This
shows that wavelet matrix series are more general than the finite Fourier
transform, which requires the function to be periodic, or Fourier series and
wavelet series, which demand a "finite energy" restriction to insure that f
does not grow too rapidly for the sums to converge. The sums defining the
coefficients of a wavelet matrix series are finite so they always exist.

The Shannon sampling theorem, well known to communications engi-

neers, is a formula that interpolates a function whose values are known for

uniformly spaced sampling points. If the sampling points are labelled by

the integers and {f(n) : n E Z) is given, then Shannon's formula states
that

f(z) "�= f(k) sinc i(z - k)
kEZ



74 An Essay on Wavelet Technology Aware, Inc. AD921018

if the function f is "band limited" to the interval [-1/2, 1/2], i.e. if the
Fourier transform of f is supported on [-1/2,1/2].

It turns out that sincz is a scaling function that corresponds to a
wavelet matrix whose genus is g = oo, i.e., a wavelet matrix that has
infinitely many columns. If the values f(n) are considered as a discrete
function, then f has a wavelet matrix expansion with respect to the sinc
wavelet matrix.

Higher Rank Daubechies-like Wavelet Matrices

Pollen [40] and Pollen and Linden [41] derived the scaling vector for the
rank m real wavelet matrices for genera g = 2 and g = 3 for which the
space spanned by the translates of the scaling function contains an arbi-
trary polynomial of degree g - 1, just as Daubechies' scaling functions D2
and D3 do for m = 2. Later Heller [23] determined the complete wavelet
matrices for these cases, including their dependence on the choice of the
characteristic Haar wavelet matrix.

For rank m and genus g = 2 the components of the smooth scaling
vector are

a0 = a0+ -L, 0< <.nm,

a+o +S =1-a. 0 , 0<#<m,

where
a0  ± 2m

The high pass elements of the wavelet matrix are naturally more com-
plicated. We find

ar = a"+-LB", O<r<m, O<s<m,

am+, = Hr - a', 0<r<m, 0_<8 m,

where H is the characteristic Haar wavelet matrix of a and

= [

2 = | a. - rm " sao]

It is easy to verify that the support of a rank m genus g scaling function
and its associated fundamental wavelet is dense in the interval [0,g +
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Figure 4-4: The Daubechies scaling function of genus 2 for m = 2 and the
analogous scaling function of genus 2 for m = 5,8.

f-•]. Thus, for g = 2 the support of these associated functions has length
2 + 1/(m - 1).

Figure 4-4 illustrates the scaling functions for ranks 2,3, and 8. It sug-
gests that these scaling functions have a limit as rn -+ oo. In the next
section we shall see that the limit is a piecewise linear function supported
on [0,2] which gives rise to a new spline-like infinite rank orthonormal
wavelet basis.

S 4.4.2 Infinite Rank Smooth Wavelet Matrices

The limit of infinite rank makes sense, and leads to new orthonormal bases
of functions in L2(R) that are piecewise polynomial of degree g - 1 if the
underlying wavelet matrix is smooth of rank g - 1. If g = 2, the scaling
vector and the infinitely many fundamental wavelet vectors are supported
on intervals of length 2, and the basis is obtained by integer translations
of the scaling function and fundamental wavelets; for m = oo there are no
"wavelets" of smaller support; the ezpansion of a function is not a mal-
tiresolution analysis.

The infinite rank limit of the quadratic wavelet matrix constraint eq(4-
14) is the orthogonality condition

S"i' '('+ z)ar(l + z)dz =

where
a'(l + z):= lim a"(jq*/i).

The zeroth moment constraint eq(4-15) takes the form

J a'(x)dz = C-'.
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The wavelet matrix series for an arbitrary discrete functions passes over
into the formula

f(r) = Z'a(k + x) (4-20)
r &

and the expansion coefficients are calculated from

4k = J 3(k + z)f(z)dz. (4-21)

These "waveletized Fourier series" formula& generalize the classical Fourier
series expansion for a periodic function.

4.5 Orthonormal Bases of Compactly Sup-
ported Wavelets.

4.5.1 The Wavelet Basis

Once a wavelet matrix of finite genus is given, a compactly supported
orthonormal wavelet basis can be constructed." Let a denote a complex
wavelet matrix with rank m and genus g. With the aid of a, a scaling func-
tion and rn- I fundamental wavelets are defined by the system of equations

")= Z 0 (m,. - k), (4-22)

where 0 < r < m. Notice that only the scaling function •0 appears on the
right side of these equations. The m - 1 fundamental wavelets are ezplicitly
defined in terms of the scaling function by the equations for 0 < r < mn,
whereas the scaling function is implicitly defined by the recursive equation
corresponding to r = 0. The scaling function is to be thought of as a "low-
pass" function while the fundamental wavelets are "high-pass" functions.

Even in the simplest case these equations also have solutions whose
support is not compact. For instance, the simplest scaling recursion is

•(z) = jp(2z) + p(2z - 1),

where rn = 2 and g = 1. It has the standard Haar scaling function solution,

f1 for 0_<z<1,
ip(') =0 otherwise

"Exceptional caes occu; rp. (291.
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which is unique on the open interval (0, 1), but this simple functional equa-
tion also has uncountably many other solutions that differ from each other
in nontrivial ways. For instance, figure 5-4 illustrates a solution whose sup-
port is R, and the figure 5-5 zooms in on the central part of the graph.
This strange solution is square integrable, piecewise linear, and continuous
except at z = 0 and z = 1.

Hereafter we shall assume that we are dealing with a compactly sup-
ported solution. Define a collection of auxiliary functions by the formula

'soI'k(Z) := rn'/ 2 (pr(m'z - k) , (4-23)

where j, k E Z. The support of Vp3 (z) has length equal to the length of the
support of w0°(z) divided by YW; the quantity j is called the scale or level
of ,rw.

•he main result of the theory is

Theorem.
{i(z) :0 < r < m;j,k E Z)

is an orthonormal basis for L2(R) and

S{P(O),-(x) : k EZ}U{W ( zr ) : 0 < r<m, ;j,L'E Z ,0 j)

is an orthonormal basis for a function space that contains the space spanned
by L2(R) and the constant function z i-- 1.

4.5.2 Representation of Functions by Wavelet Series

The wavelet series for f is

I O<r<mj>O k

where

C = J f(z);,k(z)dz

for all r, j, k.

If
(X) = (z + 1)

is a periodic function, then its wavelet expansion is

f(Z) = Co(Z + E) + 0 •
1EZ jo bEZ
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The wavelet coefficients satisfy

1,= c0, , cjk= j'+1

for all I E Z.

4.5.3 Daubechies Wavelets

Daubechies Wavelet Matrices

Daubechies [9] showed that there are wavelet bases of rank m = 2 and
genus g such that any polynomial p(z) of degree at most g - 1 has a wavelet
expansion of the form

p(Z) = P - 1);
leZ

p(z) lies in the space spanned by the integer translates of the "low pass"
scaling function. We call these bases, and the corresponding wavelet matri-
ces, Daubechies bases and Daubechies wavelet matrices, and use the notation
Dg for a Daubechies wavelet matrix of genus g. We shall also say that the
wavelet matrix is smooth of degree g - 1. There are exactly 2' Daubechies
wavelet matrices of genus g which differ inessentially from one another.

The Daubechies wavelet matrices are determined by either of two equiv-
alent conditions. One of the conditions asserts that polynomials of degree
less than g have low pass expansions; the other condition asserts that dis-
crete polynomials of degree less than g evaluated on a lattice (Z for example)
have low pass wavelet matrix series expansions,

The first condition is equivalent to requiring that the high pass moments
of the fundamental wavelets vanish, that is,

Mom,,(o') f z"j'(z)dz = 0

for O<r< m and 0•<n < g.
The second condition is equivalent to requiring that the discrete mo-

ments of the high pass rows of the wavelet matrix vanish, that is,

Mom.(d) := k"a' =0, 0<r<m, 0<n<g.
k

It is easy to prove that these sets of conditions are equivalent. This re-
sult follows from a formula that enables the continuous moments and the
discrete moments to be expressed in terms of each other:

Momrn((pr) = _ ) Momj(a')Momnj(er).
j=o
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If these conditions are satisfied, then any polynomial of degree less than g

has a low pass wavelet series expansion, i.e. an expansion in which only
the scaling function appears. In this case, there is a natural relationship
between the discrete representation and the continuous representation [24].
The reader will note that the linear condition eq(4-15) simply asserts that
constants have a low pass expansion.

An explicit formula for Daubechies wavelet matrices is known for g -
2,3,4 and 5. For g = 2 the formula is

1(IV 3- 3+v' -,3- 3-V3 1-%/3-(424D2 = j I-v3 -3+V3 3+V"3 -I - V- (4-24)

For g = 3 let u = v'i- and v = r5 + -2V05. Then the scaling vector for
D3 is

6 (1 + u + v, 5 + u + 3v, 10- 2u + 2v,

(10 - 2u - 2v,5+ u - 3v, + u - v). (4-25)

4.5.4 Complex Wavelet Matrices and Wavelets

Wavelet matrices whose entries are complex numbers have additional de-
grees of freedom which can be useful for certain applications. For instance,
although real wavelet matrices always lead to scaling functions that are
not symmetric, 7 complex wavelet matrices can produce scaling functions
whose real and imaginary parts are symmetric, and wavelets whose real
and imaginary parts are skew symmetric.

An example is provided by the rank m = 2, genus g = 3 complex wavelet
matrix

a I ( -3 - i0-5 5 -iV'5- 30 +2iV1-5
a.32 -3-05 -5 +iVI'5 30+2iVi'5

30 + 2iVI/ 5-ir -3-iV'T(-6-30-- 5 - i-5 3 + (4-26)

found by Lawton and Resnikoff. It yields a complex orthonormal wavelet
basis for which the space spanned by the scaling function and its integer
translates contains all polynomials of degree less than or equal to 2, and
the real and imaginary parts of the scaling function, illustrated in figure
4-5 are symmetric (the taller of the two graphs is the real part).

7ln digital filter terms, the low pas row is never a fiuesr pkise fllter.
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Figure 4-5: A complex orthogonal scaling function ip (m = 2, g = 3).

4.5.5 Wavelet Matrix Pairs and Biorthogonal Wavelets

The definition of wavelet matrix a can be relaxed by permitting the two
occurrences of a in the bilinear form eq (4-14) to be different. A pair of
matrices (L, R) is a wavelet matrix pair of rank m and genus g if L and R
are m x mg matrices that satisfy

Lk+., Rr+, = mbr'r6,q. (4-27)
k

L (resp. R) is the left (reap. right) matrix of the pair. Real wavelet
matrix pairs were introduced in conjunction with so-called "biorthogonal
wavelets"; cp. [7].

An important special case occurs if the elements of a wavelet matrix
pair are complex, for then the left matrix and the right matrix can be
complex conjugates. An interesting example for genus g = 3 is Heller's
wavelet matrix pair. Introduce the abbreviations

U := 1/1-, v := V/5- 2v'/1-O,

and define

( 1-u+v 5-u+3v 10+2u+2v
L:= 6 10+2u+2v 5-u+3v 1-u+v

1-u+v -5+u-3v 10+2u+2v
-10-2u-2v 5-u+3v -1Iu-v (4-28)

R=T. (4-29)
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Figure 4-6: Heller's complex biorthogonal scaling function (m = 2, g = 3).

This wavelet matrix pair yields a complex biorthogonal wavelet basis for
which the space spanned by the scaling function associated with either L
or R and its integer translates contains all polynomials of degree less than
or equal to 2, and the real, resp. imaginary, part of each scaling function
is symmetric, reap. skew symmetric. The graph of the scaling function (PL
for L is displayed in figure 4-6.

4.6 Fourier Transform of Wavelets

4.6.1 1-Dimensional Scaling Functions

Let

j(y) := e2 hijzf(z)dz

denote the fourier transform of f. If a is a wavelet matrix of rank m, and
if ý01 is integrable, then

ý°%F) -l= L{t I a° exp(21riky/m")} °(O).

4.6.2 2-Dimensional Scaling Functions

The Fourier transform of the 2-dimensional scaling function 00 that satisfies
the scaling recursion

AEA
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Figure 4-7: Zeros of the Fourier transform of the "Rectangle" Haar scaling
function.

has a similar expression as an infinite prod uct:.

n--0 L" EA

where A is a lattice. Figures 4-7, 4-8, and 4-9 display the zeros of the 2-
dimensional Fourier transform of the Hear scaling function for the complex
multiplier p -- ivY, p - 1 + i and p = (1 +- i,/)/2 respectively, on the
complex plane. In each case, all zeros are real, and the transform variables
(frequency) range from -15 to 15. While the case p - iv'• reminds one of
the zeros of sinc (ix) sinc (try), and the case p -- 1 +i i is more compli-
cated because of the rotations by multiples of u/4 radians, the third case is
fundamentally different because an infinite group of rotations actos on the
zero drives.

......... .........
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Figure 4-8: Zeros of the Fourier transform of the "Twindragon" Hear scalb
ing function.

Figure 4-9: Zeros of the Fourier transform of the "Novon" Haar scaling
function.
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4.7 Calculus of Wavelets

4.7.1 Exact Calculation of Wavelet Function Values

Calculation for m-ary rational numbers

Suppose that a is a wavelet matrix of rank m and genus g. The scaling
recursion is the system of equations

j,(z) = E aoo(m, - k). (4-30)

How can the functions O'(z) be calculated? Define

;(z) :=w(j +), 0 z <l (4-31)

and

A"(c) := ( ,,j_•+), (4-32)

where 0< r < m ande E {0, 1,... ,m- 1). The system of scaling recursion
equations is equivalent to

0j' ( -- A'(c)Ojo(z). (4-33)

If z = O.zj ... zj is the base m expansion of z, i.e. z -- Jj ', then the

previous equation is the same as

0j(0.XlX2... zj) = Av(zj)4°(0.z . .. zJ). (4-34)

Repetition of this formula yields

4ý;(0.z Z2 . zJ) = A"(xi)A t (Z2 ) ... Ar(z,)4O(0). (4-35)

For Arbitrary Rational Arguments

It is obvious that eq (4-35) provides an exact formula for Vr(z) whenever
z is a rational number whose denominator is a power of m and the value
of •O0(z) is known for integer values of z. Latto and Pollen independently
observed that the construction in the previous section leads to a unique
definition for the value of v 0(z) whenever z is any rational number. Here
is how it works: The base m expansion of a number z ultimately repeats
some sequence of digits if and only if z is rational. Suppose that

z = n.zl ... zJr ... rKrl ... rK ... r" ... rK...,
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where r, ... rK is the repeating sequence, and introduce the abbreviation

A = A(rl)... A(rK).

Then

@b;(O-XX2 ... zir,'... ,'K ...) A'(xl). ..A r (xj)@°(O.,' ... ,'K ... )

reduces the problem to computing 4°(O.rl ... rK...). But f°(O.r ... rK...)
satisfies 0,(-i..r ... = A-Oy(0-i... r ...)
This equation shows that @°(0.rl ... rK ... ) is an eigenvector of A with
eigenvalue 1, so that Ob;(z) is uniquely determined up to a normalization
factor by the scaling recursion if x is rational and the 1-eigenspace of A is
one-dimensional. The normalization factor can be specified by the require-
ment that F ,- o 0(n+O.rl ... rK) = m-K, which is a discrete version of the
formula f: V°(z)dz = 1.

4.7.2 Integration

Definite integrals of scaling functions and wavelets can be exactly evaluated
if the limits of integration have finite expansions in base m, where m, as
usual, is the rank. Equally remarkable is that a sequence of increasingly
fine finite approximations (which are special cases of the sums that define
the Riemann integral) are all equal to each other and to the infinite limit
which is the integral itself. This means that the integrals can be exactly
calculated from the finite approximations, and justifies the last formula in
the previous section. This property is one of the important links between
discrete analysis and continuous analysis that wavelets provide.

4.7.3 Formal Derivatives

Compactly supported wavelets of genus greater than 1 cannot be infinitely
differentiable.8 This is one of the ways they differ from ordinary functions
such as polynomials or the elementary transcendental functions. For in-
stance, D2, the simplest Daubechies scaling function, is not differentiable
at any of its points.

Consider the scaling function jp(z) for a wavelet matrix a of rank rn = 2,
which satisfies the recursion

(z)= Z ako(2z - k). (4-36)

$The Haar wavelet is special. It is infinitely differmtiable everywhere with the excep-
tion of two points.
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We have already seen that a necessary and sufficient condition that eq(4-36)
have a solution for dyadic rational z is that

A(0)0(0) = X-6(0). (4-37)

If jp(z) were differentiable of order s then, denoting the s-th derivative by

S= 2' E ai.o()(2z - k). (4-38)

If eq (4-38) is valid, then jp is said to have a formal derivative of order

s = -lgA.

This is equivalent to

if A is an eigenvalue of eq(4-36).
It follows that the eigenvector W(')(O) exists if and only if A = 2-1 is an

eigenvalue of A(O).
Formal differentiability is a necessary condition that the scaling function

have an ordinary derivative of the prescribed order. Now work backward':
the matrix A(0) has exactly 2g eigenvalues (counting multiplicity of eigen-
values); hence, the scaling function can have at most 2g - 1 derivatives
(since one of the eigenvalues is 1, corresponding the the zero derivative, i.e.
to 9o(z) itself). Not all of the possible orders of differentiation are integers:
fractional derivatives and complex derivatives can occur.

Example. The eigenvalues of A(0) for Daubechies' wavelet matrix D2
are

1, 1/2, (1 + Vr3)/4, (1 - Vr3)/4,

and the corresponding orders of formal differentiability are

0, 1, - lg(1I +v3)/4 = 0.5500..., - lg(1 - v'3)/4 -2 2.44998...- -i4.53236...

The formal derivatives 9(')(z) are displayed in figure 4-10 through 4-12.
The scaling function itself is the zero derivative. Although the scaling
function is not differentiable in the classical sense, it does have a well defined
formal first derivative.

'At every retional if A(O) and A(1) have common eigenvector with desired eigenvalue.
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Figure 4-10: Formal derivative of order 1 of the D2 scaling function (m=2,
g=2).

Example. The formal derivatives jp(')(z) of the scaling function for the
wavelet matrix D3 are displayed in figure 4-13. The scaling function itself is
the zero derivative. The scaling function is not differentiable in the classical
sense, although it does have both formal first and formal second derivatives.

4.7.4 Connection Coefficients for Numerical Differen-
tiation

Term-by-term differentiation of a Fourier series or a power series is easy,
because the derivative of a basis function is proportional to the same (for
Fourier series) or another basis function. The wavelet series for the deriva-
tive of a wavelet basis function has infinitely many terms so, at least at
first sight, wavelet series would not appear to provide a practical method
for representing derivatives. In fact, wavelet series turn out to be quite com-
patible with differentiation for theoretical expansions but they are superior
for numerical differentiation, and lead to superior accuracy and stability in
the numerical solution of nonlinear differential equations. In this section
we show how to calculate the wavelet expansion of a derivative in terms of
wavelet series. We will restrict our discussion to rank m = 2 and simplify
notation by writing

ip,(z) := (z - 1), O(Z) := p1(z), ',,(z) := 2/ 2 (2Jz - k).

0
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Figure 4-11: Formal derivative of order 0.5500... of the D2 scaling function
(M=2, g=2).

Ig

Figure 4-12: Formal derivative of order 2.44998... - i4.53236... of the D2
scaling function (m = 2,g = 2).

.. .- I P I p P q
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Figure 4-13: Formal derivatives of the D3 scaling function (m=2, g=3).

S =0 S =1.

s =1.08783 s =2.

s =4.3272 s =1.88745 - 4.53236 1



90 An Essay on Wavelet Technology Aware, Inc. AD921018

The wavelet series for f is

A~z) = 3c'io(x) + cj~ 0j t c3 j(X).

Differentiating this formula expresses the derivative of f in terms of the
derivatives of the basis functions poa and Ok,. Since the basis functions O

are defined in terms of *, we will begin by deriving the the coefficients for
the wavelet expansion for dioi/dx. The r coefficients in the series

d =,,(z) = rkp, (Z) + E r*'•((z)4-39)

dz k k

and

S= ' ) r+ , " (4-40)
dx j'?0 k'

are called connection coefficients. Our starting point is the collection of
formulae

rk= P (4-41)

00• dz -
jtok d),j-dx

r = I00 (z) jdx (4-42)

,'k= 0redykj 1:(z) dt (4-43)

f 00 (Z d x

"k ojlk,() '-r dX. (4-44)

The basic assumptions that are needed to find the numerical values of

the connection coefficients are:

1. The basis functions have compact support;

2. The integrals that appear exist, and integration by parts can be ap-
plied to them;

3. The basis function jo satisfies the scaling recursion.

Theorem. The connection coefficients rk satisfy the following formula:
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(i) rh = -rr

(ii) rk = rk-_ (4-45)

(iii) ro = j, F a°a°jr --k+iJ-

These relations are all homogeneous equations; they determine the con-
nection coefficients only up to a common factor. An additional equation
that is not homogeneous is needed to specify that factor. It appears to be
necessary to restrict the wavelet matrix in order to obtain an inhomoge-
neous equation. If we suppose that the wavelet matrix has genus g > I and
that f zib(z)dz = 0, then it can be shown that the function f(z) = z has
a (low pass) wavelet series that only involves translated scaling functions.
A simple calculation shows that

z = Mom,(jP) - Elo(z), (4-46)

where Mom, (o) = f zVp(z)dz, and
1

MomI(O) = 2 1 ka°.
k

Differentiating this series and substituting the connection coefficient ex-
pressions yields

I= ) rp, (z) + terms involving 9P.
I k

From this formula one easily finds

Theorem. If Momro (i):= f zx"O(z)dz = 0 for n = 0,..., d, then

(i) -k knr 0  = -6n,l for 0O<n<2n+2
(4-47)

(ii) ,, k-rO0°k = 0 for 0:< n < n.

There are similar but more complicated inhomogeneous relations for the
higher moments of the connection coefficients.

Example. Suppose that g = 2 and that the wavelet matrix is D2.

Then

(448)

where k = -2,-1,0,1,2 and , krk = -1.
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Chapter 5

A Bestiary of Wavelets

The theory of compactly supported wavelets has produced unusual new
classes of orthonormal basis functions. Some examples of these wavelet
bases challenge conventional views about the kind of mathematical analysis
that is suitable for digital signal processing. Others illustrate some of the
fine points of the theory of Lebesgue integration and its use in applications.
And some of the new functions are just interesting in themselves.

This chapter collects examples of compactly supported scaling functions
and wavelets that have helped the author to understand wavelets and de-
velop intuition about them.

The chapter is generally organized so that rank m = 2 is discussed
first, beginning with genus g = 1, for orthonormal bases of real valued
wavelet functions. This discussion is followed by examples of complex
valued wavelets, biorthogonal wavelets, wavelets of higher rank, including
m = oo, and wavelets of higher dimension.

5.1 Five Fundamental Examples

5.1.1 sinc Wavelets

Shannon's Sampling Theorem implies the formula

sine (rx) = E sinc (rk/2) sinc (i(2z - k)).(5)
k

The coefficients sinc (wk/2) are the same as the low pass row of the sinc
wavelet matrix, eq.(4-17). Eq.(5-1) shows that the sinc function is a rank
m = 2 scaling function of infinite genus. Its well known graph is displayed
in figure 5-1.

93
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Figure 5-1: The sinc scaling function has non-compact support.

5.1.2 Haar Wavelets

The Haar wavelet basis was introduced by Alfred Haar in his doctoral
dissertation in 1910 [19]. The Haar scaling function is the simplest of all:

the function is zero outside the interval between z = 0 and z = 1; if
0 < z < 1, it is equal to 1; and jp(0) = 1, o(1) = 0. Figure 5-2 illustrates
the Haar scaling function over the interval from-I to 2, and figure 5-3 shows
the graph of the Haar wavelet on the same interval.

The Haar basis corresponds to the wavelet matrix

The Haar scaling function is a compactly supported solution of the scaling
equation

p(z) = jp(2--) + j(2z - 1). (5-2)

Other compactly supported solutions of eq.(5-2) differ only at the endpoints
of (0, 1). Up to a normalizing factor, the general solution is

jp(z) = 1 for 0 < z < 1, jo(0) arbitrary. (5-3)

It is not well known that this simple scaling equation has uncountably
infinitely many other solutions that do not have compact support. Figure
5-4 displays the graph of one of them, and the following figure zooms in on
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Figure 5-2: Standard Haar scaling function with compact support.

Figure 5-3: Standard Haar wavelet with compact support.
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Figure 5-4: Haar scaling function with noncompact support.

the region of the graph centered on the interval [0,1]. This curious function
is continuous except at the points x = 0 and z = -1; more remarkable, it
is piecewise linear!

5.1.3 CarAlarm Wavelets

The CarAlarm waveletsi arise from wavelet matrices but they do not form
orthonormal bases for L2 (R). Daubechies [9] used CarAlarm2 (figures 5-6
and 5-7), whose scaling vector is (1, 0, 1, 0), to prove that wavelet matrices
do not always produce orthonormal bases for L2 (R). CarAlarm scaling
functions are nonnegative: they assume only the values zero and one. In
the figures CarAlarm wavelets are graphed for all dyadic rational arguments
z = k/2j where j _< J, and J is indicated in the caption of the figure.

Figure 5-8 illustrates the modulus of the Fourier transform of Car-
Alarm7: it is evidently proportional to the modulus of the Fourier transform
of the standard Haar scaling function, i.e. to the modulus of the sinc func-
tion, whose graph is shown in the same figure as the thick gray curve. This
suggests Daubechies' argument, that CarAlarm 8 is just a stretched version
of the Haar scaling function supported on (0,3], which is too wide to be
orthogonal to its integer translates. This argument would be valid were the
sinc function integrable, for then its inverse Fourier transform would be

i Named by David Phumner, who discovered that is what these wavelets soumd like

when played through the computer's loudspeaker.

S
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Figure 5-5: Haar scaling function with noncompact support (Zoomed).

0
Figure 5-6: CarAlarrn2 scaling function; J = 4.

* * * * * * . * * * * * * * * * * * * .* * * * ** * * * * * *
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Figure 5-7: CarAlarml wavelet; J = 4.

equal to the CarAlarm2 function. But sinc z dies off too slowly to belong
to L1(R), so a more subtle analysis is required.

If one considers the restriction of CarAlarm•2 the dyadic rational num-
bers, where its values are given by the scaling recursion, then it can be
shown that this discrete CarAlarmf function is orthogonal to its integer
translates with respect to a Riemann sum-like inner product. This interest-
ing observation suggests employing a theory of integration weaker than the
Lebesgue theory and similar to the Riemann sum approximations employed
in Riemann integration in order to retain orthogonality for the CarAlarm
wavelets.

The 2g eigenvalues of A(O) for CarAlarmg are roots of unity whose order
divides 2(g - 1). Sometimes this order equals 2(g - 1), as shown figure 5-9
for g = 15. The eigenvalue 1 always occurs with multiplicity greater than
one. CarAlarm3 is a rank m = 2, genus g = 3 wavelet matrix whose scaling
vector is (0, 0,1,0, 0, 1). The corresponding scaling function is displayed in
figure 5-10.

5.1.4 NonNegative Wavelets

The CarAlarm wavelets are non negative but their values are systemat-
ically zero on a lattice of dyadic rational numbers. Since these func-
tions are clearly out of the ordinary, it not surprising to learn that Car-
Alarm is not integrable, and that it does not produce an orthonormal basis
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Figure 5-8: Modulus of the Fourier transform of the CarAlarm2 scaling
function, in dB.

Figure 5-9: Geometry of the eigenvalues of A(O) for CarAlarm15.

* 0

* 0

*
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Figure 5-10: CarAlarmS scaling function; J - 4.

Figure 5-11: CarAlarmS wavelet; J = 4.
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Figure 5-12: Modulus of the Fourier transform of the CarAlarmS scaling
function, in dB (m = 2,g = 3).

in the sense of L2(R) orthogonality. The class of wavelets called Non-
Negative arise from wavelet matrices that lie near the CarAlarmn wavelet
matrices in the metric of the wavelet matrix parameter space. There
are infinitely many wavelet matrices of this class. A NonNegative scal-
ing function appears to be non negative, i.e. its graph appears to lie
on or above the z-axis. Its graph can appear to be relatively smooth as
well, although this is misleading. What is more important is that these
wavelet matrices satisfy Lawton's criterion for producing an L2(R) or-
thonormal basis. The orthogonality of the overlapped scaling functions
and their apparent positivity seem to be contradictory. For the Non-
Negative wavelet matrix near CarAlarmS whose scaling vector is a° -

(0.08002,9.3954 x 10-s,0.92123, -0.06794, -0.00125,1.06785), the corre-
sponding scaling function is shown in figure 5-13; it certainly appears to
be "non negative." But, if x = k/2i and j > 15, then tp(z) assumes nega-
tive values. These negative values at fine scales provide the orthogonality
required by theory, but they are not accessible to measurement.

The figure is also misleading because consecutive points are connected.
If the figure displays only the computed points, the result looks like figure
5-14:

The following two figures show the modulus and argument of the Fourier
transform for the scaling function NonNegative.

A scaling function that is much closer to CarAlarmS and shows how
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Figure 5-13: The scaling function NonNegative (m = 2, g = 2; J = 6).

Figure 5-14: The same NonNegative scaling function: only computed points
are shown. (m =2, g =2; J= 6).
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Figure 5-15: The NonNegatiie wavelet (mn = 2, g = 2;3J = 6).

Figure 5-16: Modulus of the Fourier transform of the scaling function Non-
Negative, in dB.

S
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Figure 5-17: Argument of the Fourier transform of the scaling function
NonNegative.
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NonNegarive functions arise is the scaling function NonNegative(a). Its
scaling vector is, correct to order 10-v,

The= (1.5 × 10-s,0,1 1- 1.5 × 10a1n,-1.5 x 101r , 10-1, 1 + 1.5 s 10-"s).

The graph of the scaling function and wavelet are shown in figures 5-18
and 5-19.

The following two figures show the modulus and argument of the Fourier
transform for the scaling function NonNegative(w).

5.1.5 Daubechies Wavelets
The Daubechiea wavelets lie at another extreme in the space of all wavelets,
for these wavelets are as smooth as a wavelet can be, and they provide high
order polynomial approximations. This is why they have been so often used
for applications where approximation and interpolation are important.

The Fourier transform of the Haerscaling function differs from sinc ix :
sin #zfuz by a phase factor, so the modulus of sinc is the modulus of the
Fourier transform of the Hear scaling function, which is denoted D1 to
remind us of its relationship to the Daubec, ies wavelets.

S
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Figure 5-18: The scaling function NonNegative(a); only computed points
are shown. (m = 2, g = 2; J = 6).

Figure 5-19: The NonNegative(a) wavelet (m - 2, g = 2; J = 6).

0
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Figure 5-20: Modulus of the Fourier transform of the scaling function Non-
Negative(a), in dB.

S
Figure 5-21: Argument of the Fourier transform of the scaling function
NonNegative(a).

3 00 0 • . . ,0"
00% 0 0 00 0%*OS .0 @ 0 05 **0 . * 0•o. '' 0e° 0. 00 o• % .. , ... 0 .• . •2 . " . o 0 : go ,

eg
0

.
0

*o o.00 o - 0% %. * 0 0.
* 0 0 *.SS0 0 .S 00

0 0 0 0 00 go 0- . %'e~h. . . . . .0.. . %. .
* g0.0 , * 01.S * 0 0 00

00 0 0 : 0 , *
•00 " o 000 , : Soo ..

go 3 0 %4 0. 0 o .0 ..

*• 10... .. s .. . , 3 *-00 0000 0 0000a 0 00
S00 . 00 . 0 0.0 0 0. 0

-2 - 0000 ..

so 00.0 0 0 0 r 6 goo

1*0 0 0 0
*@ 0 s 0 1o0o 0

- 3 L 01 0e 00 0~ 0 0 0 Q* 0*



Bestiary of Wavelets 107

Figure 5-22: Modulus of the Fourier transform of the DI scaling function,
in dB. i.e. I ainc (xz)J.

Figure 5-23: Modulus of the Fourier transform of the D2 scaling function,
in dB.
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Figure 5-24: Argument of the Fourier transform of the D2 scaling function.
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Figure 5-25: Modulus of the Fourier transform of the D3 scaling function,
in dB.
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Figure 5-26: Daubechies scaling function D5 (m = 2,g = 5).

Figures 5-29 and 5-30 display the scaling function and wavelet for the
Daubechies wavelet matrix of genus g = 15. The basis formed from these
functions can perfectly interpolate polynomials up to degree 14. While the
scaling function is supported on an interval of length 29, figure 5-29 shows
that the effective support, i.e. the length of the interval where the function
is significantly different from zero, is only about 10 units long.

5.2 Real Orthogonal Wavelets

5.2.1 A wavelet basis of genus g = 2.

There are only two essentially distinct rank m = 2 wavelet matrices of genus
g = 2 that lead to formally differentiable wavelets: one is the Dawbechies
wavelet matrix D2; the other is a wavelet matrix called R*2. The Rt2
wavelet matrix is

0
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Figure 5-27: Daubechies wavelet D5 (m = 2,g = 5).

Figure 5-28: Modulus of the Fourier transform of the D5 scaling function,
in dB.
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Figure 5-29: Daubechies scaling function D15 (m = 2,g = 15).

Figure 5-30: Daubechies wavelet D15 (m = 2,g = 15).
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Figure 5-31: Formally differentiable scaling function R*2 (m = 2, g = 2).

Figure 5-32: The wavelet /R2 (m = 2, g = 2).

S
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Figure 5-33: The scaling function Hat (m = 2,9 = 3).

5.2.2 Hat Wavelets

Scaling functions derived from a wavelet matrix can never be symmetric,
but they can be very nearly sysmmetric. The wavelet system Hat is an
interesting example for genus g = 3; the scaling function and wavelet are
illustrated in figure 5-33. The scaling vector for Hat is

a= = (-0.0943,0.4966, 1.2066,0.5246, -0.1123, -0.0213).

5.3 Flat Wavelets

If the entries of the wavelet matrix a are, up to a common factor, equal to
±1 we say that a is a flat real wavelet matrix; if the entries of a are, up
to a common factor, complex numbers of modulus 1 we say that a is a flat
complex wavelet matrix.

The flat real matrices of genus g = 1 are Hadamard matrices, and
the flat complex matrices of genus g = 1 are (up to a normalizing factor)
modifications of the Finite Fourier Transform matrix.
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Figure 5-34: The wavelet Hat (ty, = 2, g = 3).

0
Figure 5-35: Modulus of the Fourier transform of the scaling function jp for
Hat (m = 2,g = 3).

0
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Figure 5-36: The scaling function for a ftat wavelet (m = 2,g = 4).
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Figure 5-37: The modulus of the Fourier transform of the previous scaling
function, in dB (m = 2,g = 4).
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Figure 5-38: The argument of the Fourier transform of the previous scaling
function, in dB (in 2, g = 4).
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Figure 5-40: The scaling function for a fiat wavelet (m - 2,g = 16).
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Figure 5-41: The modulus of the Fourier transform of the previous scaling
function, in dB (m = 2, g = 16).

Figure 5-42: The argument of the Fourier transform of the previous scaling
function, in dB (m = 2, g - 16).
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Figure 5-43: The wavelet for the same fiat wavelet matrix (m - 2,g = 16).
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Figure 5-44: Geometry of the eigenvalues for a real fiat wavelet matrix of
rank m =2 and genus g =16.
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Figure 5-45: The real part of the Lawton-Resnikoff complex scaling func-
tion, m = 2,g = 3.

0

0
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Figure 5-46: The imaginary part of the Lawton-Resnikoff complex scaling
function, m = 2,g = 3.
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Figure 5-47: The real part of the Lawton-Resnikoff complex wavelet, m -
2,g = 3.

0
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Figure 5-48: The imaginary part of the Lawton-Ressikoff complex wavelet,
M = 2,g = 3.

Figure 5-49: Modulus of the Fourier transform of the Lauwton-Resnikoff
scaling function, m = 2, g = 3.

II
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Figure 5-50: Cohen-Daubechies-Fesaveau left biorthogonal scaling function
(m = 2,g = 4).

5.5 Bicthogonal Wavelets

Biorthogonal wavelets are a generalization of the wavelet idea obtained by
weakening the assumptions that constrain the wavelet matrix. In general,
these "weakened wavelets" have little to offer that is really new. But there
is one case where biorthogonal wavelet matrices and biorthogonal wavelet
functions do add something: biorthogoral wavelets can be symmetrical. An
important example was discovered by Heller [23], whose complex biorthog-
onal wavelets are illustrated in figures 5-56 -5-60. The wavelet matrix was
given in eq(4-28).

5.5.1 Cohen-Daubechies-Feauveau Wavelets

The following real biorthogonal wavelet matrix pair of genus g = 8 is
particularly useful for image compression when the amount of computation
is not a major constraint.

0
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Figure 5-51: Cohen-Daubechies-Feauveau left biorthogonal wavelet (m -
2,g = 4).

Figure 5-52: 9L - q for Cohen-Daubechies-Feauveau biorthogonal wavelet
(m = 2,g = 4).
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Figure 5-53: inv for a biorthogonal wavelet matrix of genus 9 = 8. (m =
2,g = 8).

Figure 5-54: OL for a biorthogonal wavelet matrix of genus g = 8 (m =
2,g = 8).
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Figure 5-55: ftL --R for a biorthogonal wavelet matrix pair of genus g = 8
(m = 2,g = 8).

The absolute value of the difference VoL - V is less than 0.02.

5.5.2 Heller Wavelets

Heller's wavelets are complex biorthogonal functions with useful symme-
tries. The simplest example is for g = 3. The wavelet matrix given in eq.
(4-28) produces the scaling function and wavelets shown in figures 5-56 -
5-60.
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Figure 5-56: Real part of the 6-coefficient Heller biorthogonal scaling func-
tion '9L

0

Figure 5-57: Imaginary part of the 6-coefficient Heller biorthogonal scaling
function 9L

0
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Figure 5-58: Modulus of the Fourier transform of the Heller scaling func-
tion, m = 2,g 3.

5.6 Negative Multiplier Daubechies Wavelets

The equations that define a wavelet matrix can be extended to negative
multipliers. Let m be an integer and suppose that nml > 1. The extended
equations defining a wavelet matrix are

-rk'ml~h+mI = Iml6 "6'b,,. (5-4)

The linear constraint is
a- I= 6°''. (5-5)

m is called the multiplier, the rank is Iml. It is easily seen that the solutions
of these equations for negative multiplier m coincide with the solutions for
the positive multiplier Iml. Although the wavelet matrices are the same for
positive and negative multipliers of the same rank, the scaling functions and
wavelets are different. Recall that the defining equations for these functions
are

~(z) ~arp (mz - 0).
k

Figure ?? displays the scaling function for multiplier rn = -2 with wavelet
matrix D2. Comparison with figure 4-1 shows that the negative multiplier
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Figure 5-59: Real part of the 6-coefficient Heller biorthogonal scaling func-
tion O'L

Figure 5-60: Imaginary part of the 6-coefficient Heller biorthogonal scaling
function OL
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Figure 5-61: Daubechies wavelet with negative multiplier (m = -2,g = 2).

scaling function is more symmetrical and appears to the eye to be smoother
than Daubechies' function, although it shares the property that polynomials
of degree 1 can be represented as a low pass sum of linear combinations of
the negative multiplier scaling function and its integer translates.

The Fourier transforms of the two scaling functions differ only in phase.

5.7 Higher Rank Wavelets

5.7.1 Pollen-Plummer Higher Rank Wavelets

ThePollcn-Plummer higher rank scaling functions are generalizations of the
rank 2 scaling functions discovered by Daubechies. They satisfy the scaling
recursion

p(z)= a°Op(mz- k) (5-6)
k=o

and all moments of order less than g of each fundamental wavelet

Mk-I

k--0
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Figure 5-62: Formal derivative of Daubechies wavelet with negative multi-
plier (m = -2, g = 2).

vanishes for 0 < r < m. For genera g = 2 and 9 = 3 Heller has found
all possible ways of completing the first row of the corresponding rank m
wavelet matrix to a full rank m wavelet matrix.

The Pollen-Plummer scaling functions for genus g = 2 and multipliers
m = 3,5 and oo are illustrated in figures 5-66 and 5-67.

As m --+ oo these scaling functions tend to a limit which coincides
with the limit of the first row of the wavelet matrix. In terms of the
variable z = k/m, and letting k and m approach oo so that their ratio
tends to a finite limit yields a function Vo(z) of the continuous variable
z (displayed in figure 5-68 ) that is supported on [0,2) and generates a
complete orthonormal system for Ltwo(R) in the usual way. In particular,
the set {fjO,(z - 1) : I E Z) of translations of the scaling functions are
orthonormal, and every polynomial of degree I can be expressed as a linear
combination of them.
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Figure 5-63: Previous figures on a common scale.
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Figure 5-64: Daubeches scaling function with negative multiplier (m -
-2,g = 3).

0

Figure 5-65: Daubechies scaling function with negative multiplier (m =
-2,g = 5).
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Figure 5-66: PPD(3,2) scaling function (m = 3,g = 2).

3 m

Figure 5-67: PPD(5, 2) scaling function (m = 5, g = 2).
5=r
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Figure 5-68: PPD(inf, 2) scaling function (m = oo, g = 2).

5.8 Higher Dimensional Wavelets

5.8.1 Irreducible Two-Dimensional Wavelets

A is a lattice in the complex plane and p E A is a complex number such
that

pA C A

A 2-dimensional wavelet matrix is a 17p x g#ip matrix a of complex numbers

ao0  .. I)
a :-- ... ar .

afOp-' a;.,,,

that satisfies the wavelet scaling conditions

XEA 1EA = I
(EA-7)
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Matrix Formulation

The mapping ~zy -Y)

is a 2-dimensional real representation of the field of complex numbers C.

It is easily verified that

Izj 2 = iz = det v(z)

and
7+ z = tr ,r(z).

The scaling equation can be written in terms of addition and multiplication
in the matrix ring.

Consider multipliers p E C such that 2tr r(p) and m := det v(p) are
integers. These multipliers can be classified according the values of the
determinant and trace. The case where m = 1 is not interesting. For
M = 2 there are three possibilities.

The Three Cases for m = 2

If tr r(p) = 0 then

ae = t(h oivn2l) p ossibi iie

are the only possibilities.
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Figure 5-69: One-dimensional to two-dimensional mapping for the Rectan-
gle Haar scaling function jo(z) (m = 2, g = 1).

Figure 5-70: Novon Haar scaling function jp(z) (m = 2,g = 1). 0
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Figure 5-71: One-dimensional to two-dimensional mapping for the Notion
Haar scaling function jp(z) (m =2, g 1).

................ ........ -..

Figure 5-72: Twvivdragon Haar scaling function wp(z) (m 2, g =1).
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Part III

Applications of Wavelet
Technology to Bandwidth
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Chapter 6

Bandwidth Compression

6.1 Image Compression

6.1.1 Imagery

The human eye and the ear capture an amazing amount of data every sec-
ond - much more than the brain can consider. For instance, in normal
daylight vision, the color sensitive receptors of the retina in each eye collect
about 800 megabits of visual information each second. The first step in
making what the eye sees available to the brain is the reduction of this
enormous amount of data by selective omission of less important informa-
tion. The neural network that connects the eye to the visual cortex does
this in real time, continuously and automatically. This automatic culling
or "compression" reduces the amount of information that reaches the brain
by a factor of at least 100. This fact shows that most of the physical infor-
mation represented in the light signal that falls on the eye is not needed by
the brain - this basic fact about vision is the psychophysical cornerstone of
practical compression algorithms for video and other natural images.

6.1.2 Measures of Image Quality

The decompressed image produced by a lossy compression process is not the
same as the original. The problem of defining image quality is to provide
a method for comparing different image compression methods. Although
this question is a natural one, a satisfactory answer still eludes the research
community.

For many years engineers adopted "mean squared error" as a measure of
quality. For a decompressed gray scale image, the mean squared error is the

145
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Figure 6-1: Simultaneous contrast enhances edges.

sum of the squares of the differences between the corresponding pixel values
of the source image and the decompressed image. Mathematically, this is
the discrete L2(R) norm of the difference of the two images; physically,
the L2(R) error measures the energy in the difference image. The mean
squared error per pixel is often used to compare the quality of images of
different size.

Misplaced image energy is certainly a quality measure: if the misplaced
energy is large, the quality cannot be high. But a small L2(R) error need
not imply that the two images are subjectively interchangeable. There are
several reasons for this. Nonlinearities in the human visual system result
in a nonuniform weighting of different types of visual phenomena which is
not captured by the L2 (R) norm. Moreover, if the energy in the difference
image is localized, it may appear as an artifact but if the error energy
is more or less randomly distributed throught the image, it may not be
perceived at all. Image compression experts know that mean squared error
is not proportional to subjective image quality, but it is frequently used as
a substitute nevertheless.

The maximum error, i.e. the largest of the absolute values of the pixel
differences, is a measure that may correspond better to subjective quality
assessments.

For a fixed quality level, the amount of compression that is inherent
in an image depends on the size of the image and the rate at which it is
sampled.

Images sampled at higher resolution have greater redundancy because
uniform regions of the image account for a greater number of samples. For
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Figure 6-2: Trade-off between compression ratio and image size for three
fixed levels of quality for Aware's compression.
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a fixed level of absolute resolution, natural images and images of a larger
scene typically have greater redundancy than images of a smaller scene
because of the local uniformity of physical objects.

Let N denote the number of pixels in a rectangular image. We will
normalize storage requirements so that the amount of computer memeory
required to store one pixel of image information is I storage unit. Let C(N)
be the number of storage units required to store a compressed version of
the image. Then N/C(N) is the compression ratio.'

Figure 6-2 displays three graphs that show how C(N) varies with N for a
fixed image sampled at increasing resolution and compressed by a wavelet
image compression algorithm. The graphs were constructed by starting
with a digital image sampled at a high resolution. To obtain subsampled
lower resolution versions of the image, it was partitioned into 2 x 2 blocks
of adjacent pixels which were averaged. The average value was assigned
to each of the pixels. This procedure was repeated a number of times to
reduce the sampling resolution.

Each curve in the figure corresponds to a different subjective quality
measure. The lowest curve corresponds to compressed image whose de-
compressed form is visually identical to the original; the next higher curve
corresponds to decompressed images that are visually different from the
original but do not produce "unacceptable" artifacts. The highest curve

1Here we we omitting the overhead storage required to decamprenm the image. Since
is - for wavelet compression - a small fraction of the total, we shall ignore it.
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corresponds to decompressed images that appear natural when viewed alone
but have obvious natural looking artifacts when compared with the original.

The first and third curves appear to be asymptotically linear, and the
second appears to lie between the other two. If we assume that the curves
are asymptotically linear, this implies the relation

NIC(N) = (a + N)/16

for constants a and P3, at least for N very large, so

C - + j6 " (6-1)

As N --i oo, we find
lim C(N) = 63.

N-cc
This formula states that if N is sufficiently large, then there is no further
information gained by sampling the image at increasingly fine scales.

6.2 Transform Image Compression Systems

6.2.1 System Block Diagram

The block diagram of a transform image compression system is shown in
figure 6-3.

A transform compression encoder consists of three subsystems: a trans-
form subsystem; a quantization subsystem, and an entropy codersubsystem.
As shown in the figure, the input signal progressively passes through these
subsystems.

The Transform

The transform is invertible; no information is lost in this stage of the com-
pression process. The transform merely reorganizes the input image data in
a way that makes the quantization stage more effective. Since the transform
is invertible, it is not directly responsible for any compression: for a gray
scale image, for instance, the transformed image provides one transform
coefficient for each input pixel value.2

The purpose of the transform is to reorganize the image data to con-
centrate large scale/low spatial frequency image signal energy into a small
number of coefficients for subsequent quantization. Selection of a transform
is governed by the following criteria:

2 The transform may dhange the dynamic range d the input values, and thereby
require more or les storage for a transform coefficient. We shal ignore this factor in ow
discusmon.

0
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Figure 6-3: Diagram of a transform image compression system.
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"* Transforms that concentrate large scale/low spatial frequency energy

better are preferred.

"* Transforms that are computationally efficient are preferred.

"* Transforms that retain localized image information (e.g. edges, spec-
ular reflection) in the low frequency transform coefficients are pre-
ferred.

The Quantizer

The quantizer allocates different numbers of bits for the representation of
different transform coefficients. The allocation of zero bits is the same
as omitting the transform coefficient. Typically, the transform coefficients
that correspond to the highest spatial frequencies will be omitted. Since
noise populates all spatial frequency states, and there are more high spa-
tial frequency states than low, it follows that omission of the high spatial
frequency transform coefficients preferentially eliminates noise and hence
may actually enhance the appearance of the image. A more refined ap-
proach to quantization enables some high spatial frequency information to
be retained at the expense of low spatial frequency information.

The quantizer provides all of the lossy compression - quantization is not
invertible. The selection of a quantizer is governed by the following criteria:

" Quantizers that provide a good model of the source imagery are pre-
ferred.

" Quantizers that incorporate a good human psychovisual model are
preferred.

"* Quantizers whose quantization rules are computationally efficient are
preferred.

The Entropy Coder

The final step in the compression process is removal of redundancy from the
stream of quantized transform coefficients by means of an entropy coder.
Entropy coding is invertible: no information is lost in this stage of the
compression process. Neverthelesas, when entropy coding is applied to a
suitably transformed and quantized image, it provides a significant com-
pression increment - there can be as much as a 30% reduction in the size
of the compressed file. Entropy coders are not all equal. The selection of a
quantizer is governed by the following criteria:

0
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Figure 6-4: Discrete cosine transform ("DCT") matrix for JPEG: m =

8,g= 1.

2 4 6 8

"* Entropy coders that limit the number of pixels that can be affected
by communications channel errors are preferred.

"* Entropy coders that have smaller memory and/or processing require-
ments are preferred.

6.2.2 Conventional Block Transform Image Compres-
sion

Conventional block transforms have been used for image compression for
several decades. Today, the best known, if not most effective, block trans-
form is the discrete cosine transform ("DCT") [47). The ISO JPEG3 still
image compression standard employs a rank m = 8 DCT block transform.
The graph of this 8 x 8 matrix is shown in figure 6-4 where the matrix is
depicted as a surface by interpolating the matrix entries. The top rows
is the (constant) low pass scaling vector. The other seven rows are high
pass. The matrix elements are the top values of the DCT digital filter. In
section 6.3.1 DCT compression is compared with compression employing
rank m = 2 wavelets matrices of higher genus.

Experiments to compress images using the Hadamard transform of rank
m = 64 yielded poor results (cp. [42]), as one would expect from examining
figure 6-5 which, although it illustrates the rank m = 8 Hadamard wavelet
matrix, already begins to show the roughness in the transform matrix that

3The International Studardsa Or#anizatio% Joint Picture Experts Group is the body

charged with establishlng standards for stMll image transmiasion and comprmsion formats.
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Figure 6-5: Hadanard transform matrix: m = 8,g =1.

2 4 6 8

leads to characteristic artifacts and low compression ratios.

6.3 Wavelet Image Compression

Today, the most successful general image compression method is based on
the two dimensional product basis constructed from the Daubechies wavelet
matrix D3. Recall that D3 provides a low pass representation of polyno-
mials of degree less than 3. From this it follows that the product basis
provides a low pass expansion of polynomial functions of two variables, say
z and y, each of degree less than 3. These surfaces are good models for light
reflected from smooth surfaces such as walls, or the cheeks and forehead of
a face. The ability to represent reflected light energy that produces surfaces
in a digital image means that this trasnform is effective in concentrating
a large fraction of the image energy in a small number of low pass ("near
dc") transform coefficients.

Figures 6-6 and 6-7 show the scaling function and fundamental wavelet
for D3.

0



Bandwidth Compression 153

Figure 6-6: Daubechies scaling function p for D3 (m = 2, g = 3).

Figure 6-7: Daubechies wavelet i for D3 (m = 2, g = 3).
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Figure 6-8: Stereogram of the product of scaling functions (o(z)Vo(y) for
D3. (The origin of coordinates is at the lower right.)

Figures 6-10 tnrough 6-13 display the product basis functions

iP(z)(y), ip(z)C), 0z)(y), 'P(z)•(y), WOW

each of which corresponds to a two dimensional digital filter. The filters that
correspond to thest basis functions transform the original image into four
components: the low-low, low-high, high-low, and high-high parts of the
transform. Each of these outputs contains one quarter as many coefficients
as the input image, so the total number of output coefficients is the same as
the number of input coefficients. This fact makes it possible to conveniently
display the transform coefacient output as an image also by scaling the
coefficients to fall in the range of the input pixel values - say the range 0
to 255 for an 8 bit grayscale image.

The Lenna figures 2 and 5-73 were constructed this way. They illustrate
the first stage in applying the wavelet transform for compression.

Figures 6-8 and 6-9 are stereograsis of the graph of the "Lo-Lo" function
po(z)V(y), and the "Hi-Hi" function O(z)O(y), respectively. The reader

should focus at infinity to view these stereograms.
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Figure 6-9: Stereogram of the product of wavelet functions 'O(z)O(y) for
D3. (The origin of coordinates is at the lower right.)
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Figure 6-10: Two-dimensional low-low product wavelet basis function built
from D3: p(z),p(y).

0
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Figure 6-11: Two-dimensional low-high pass product wavelet basis function
built from D3: jo(z)0(y).

0
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Figure 6-12: Two-dimensional high-low pass product wavelet basis function
built from D3: t(z)9o(y).
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Figure 6-13: Two-dimensional high-high pass product wavelet basis func-
tion built from D3: iP(t)4'(y).
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6.3.1 Comparison of Conventional and Wavelet Image
Compression

In this section we compare images compressed by conventional block trans-
forms and their wavelet-unified higher genus versions, for various choices of
the rank, genus, and characteristic Haar wavelet matrix.

The conventional block transform filters for image compression described
in section 6.2.2 for the Discrete Cosine (DCT) and Hadamard transforms
are the characteristic Haar wavelet matrices illustrated in this section. We
consider ranks m = 2,3,4 and 8, and genera g = 1 (the block transform),
2, 3, and 4.

In order to make even small differences perceptible, the source image,
shown in figure 6-14, is a 64 x 64 pixel square centered on the right eye
of the Lenna image. There are 8 bits of grayscale information per pixel.
Each pixel in the original image has been magnified (without interpolation
or smoothing) so that it is an 8 x 8 square that occupies 64 pixels.

The source image was compressed at a compression ratio of 32-to-i
using the two dimensional tensor product wavelet basis constructed from
the designated 1-dimensional wavelet matrix. The grayscale pixel values -
integers from 0 to 255 - were interpreted as values of a function on a two
dimensional square lattice. Four levels of a Mallat tree decomposition were
used to represent the grayscale image function as a wavelet matrix series.
The resulting collection of wavelet matrix series coefficients was quantized
but, in the interest of simplifying this discussion, the quantization algorithm
is a simplified version of one that would be used to obtain the best quality.

Each eye image was equalized to provide better contrast for printing.
The laser printer process used to print this volume employs dithering to
create the gray tones displayed in the figures. The dithering process tends
to interpolate and "low pass filter" the original digital image. Nevertheless,
the dithered displays provide a useful indication of the systematic effects
of using wavelet matrices of varing rank, genus, and characteristic Haar
wavelet matrix for image compression.

Figures 6-15 through 6-18 demonstrate the importance of overlapping
basis functions and Daubechies wavelet matrices for capturing the polyno-
mial smoothness inherent in the source image and reducing blocking arti-
facts in the decompressed image. As the genus g increases, the blocking
artifacts are decreased, but so too is faithful representation of edge infor-
mation because the larger support of the scaling function is less sensitive
to localized detail. The optimum combination of polynomial smoothness
and sensitivity to edge detail appears to occur for g = 3 or g = 4.
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Figure 6-14: Lenna eye source image.

Figure 6-15: Lenan eye decompressed at 32-to-I via Dl (m =2,g =1).

------
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Figure 6-16: Lenna eye decompressed at 32-to- I using D2 (m =2, g =2).

Figure 6-17: Lenna eye decompressed at 32-to-i using D3 (m 2,g =3).
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Figure 6-18: Leana eye decompressed at 32-to-1 using D4 (m = 2,g = 4).

Figure 6-19 illustrates the characteristic properties of an image corn-
pressed with the rank m = 8 Discrete Cosine Transform used in the ISO
JPEG still image compression international standard. The blocking arti-
facts due to the unoverlapped transform are obvious and distracting. The
genus g = 2 "waveletized" DCT illustrates the benefit of employing over-
lapped basis functions.

Compared with the rank m = 2, genus = 1 block transform, the m = 8
DCT yields a much more faithful decompressed image because the higher
rank is one way of increasing spectral resolution to capture more edge in-
formation. But the figures suggest that increasing spectral resolution by
increasing the genus of the transfiorm rather than its rank is more effective.
This observation has been confirmed by extensive studies at Aware, Inc.

S
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Figure 6-19: Lenna eye decompressed at 32-to-i using the DCT (m =8,9

Figure 6-20: Lenna eye decompressed at 32-to-i using the "waveletized"
DCT (m 8,g= 2).

----------------
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Figure 6-21: Lenna eye decompressed at 32-to-I using the Hadamard trans-
form (m =8, g =1).

Figure 6-22: Lenna eye decompressed at 32-to-i using the "waveletized"
Hadamrard transform (m =8, g =2).
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Having seen so many compressed examples of Lennan' eye, let us see
what happens when the entire NITF6 Len. image is compressed using a
"production code" multilevel transform, full quantizer, and entropy coder.
The original NITF6 image is displayed in figure 6-23.4 For comparison,
figure 6-24 is a 32-to-1 compressed image employing the D3 wavelet trans-
form.

6.4 Multiresolution Audio Compression

6.4.1 Audio Signals

It is much the same for sound. The ear selectively omits the less important
information, which is usually most of an audio signal. Only a fraction of
the audio information that activates the eardrum actually reaches the brain
to be "heard." If, for instance, two tones are close in pitch, then the brain
will hear the louder of the two but not the softer. The designer of an audio
compression algorithm will take the auditory consequences of this psychoa-
coustic "masking threshhold" this into account. Figure 6-25 schematically
illustrates the masking threshold for human hearing. A good compression
algorithm will selectively omit the same kind of information that the hu-
man sensory system selectively omits to achieve higher compression levels
without compromising quality; cp. [57], [58], [59].

Figure 6-26 displays the energy density as a function of time and fre-
quency for an audio signal. Time progresses along the axis from the lower
center toward the upper right, and frequency increases linearly along the
axis from the upper left to the lower center in the graph. The next figure
shows the same information but the effect of the psychoacoustic masking
threshhold on audibility is indicated by printing the masked signal energy in
light gray. Comparison of the figures shows that a relatively large fraction
of the energy in an audio signal cannot be heard by the ear.

Designing a compression alghorithm for audio that takes masking into
account is thus a problem in nonlinear filter design.

4 The original is an S-bit per pixel Wray scale image, which cannot be adequately
reproduced by the laser printer. The image shown here is a dithered grayscAle expressed
by binary (black and white) pixels.
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Figure 6-23: Original NITF6 Lenna image.
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Figure 6-24: Lenna decompressed at 32-to-I using the D3 wavelet transform
with quantization (m = 2, g = 3).
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Figure 6-25: Schematic representation of the audio masking threshhold
function.
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Figure 6-26: Energy density as a function of time and frequency for an
audio signal.

0
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Figure 6-27: Psychoacoustic map of the same audio signal showing effect
of tbe masking threshhold.
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Chapter 7

Channel Coding

7.1 Relation to Shannon's Channel Coding
Theorem

Claude Shannon, who founded information theory, proved that it is possible
to add redundancy to the information so that a message can be received
error-free and yet use all of the channel's capacity. The idea is simple al-
though the conclusion is amazing. If the information in a message could
be spread throught the entire transmitted signal, like a hologram each of
whose parts contains information about the whole, then noise bursts might
corrupt some parts of the transmission but would be correctly received, and
the whole message could be unraveled from the received parts. This is the
intuitive idea behind Shannon's channel coding theorem. But the chan-
nel coding theorem doesn't show how to construct a good channel code
"hologram." The problem has two parts: (i) Find a way to package some
redundancy along with signal so that the redundant information spreads
the signal throughout the entire message; and (ii) The fraction of redun-
dant information added to the message becomes negligible as the messages
becomes arbitrarily long. Then all of the channel capacity can be used
without penalty.

Figure 7-1 illustrates the relationship between the noise energy per bit
No, the signal energy per bit Eb, the bandwidth in Hertz of the channel
W, and the channel capacity in bits C for a binary symmetric channel.
Error-free communications are possible for every point that lies below the
curve.

A channel coding algorithm attempts to provide a constructive and
practical realization of Shannon's Channel Coding Theorem, which loosely
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Figure 7-1: Shannon's channel coding theorem.

channel c t 37 53 5
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asserts that arbitrarily reliable communication is possible at any rote below
channel capacity; (37, 53, 54].i

Although Shannon's theorem is not constructive, it does prescribe an

unrealizable procedure that would code or "modulate" the message bit-
stream onto the signal carrier so as to completely utilize channel capacity.
This procedure employs modulating codewords that are overlapped random
coding sequences or "waveforms" of infinite duration. If distinct codewords
represent the message symbols "0" and "I", then the statistical orthogo-
nality of random waveforms insures that cross-correlations are zero and the
autocorrelation of each random waveform is the delta distribution. Hence,
despite the presence of channel noise, the received message can be decoded
by passing it through a set of filters matched to the random waveforms.

The key factors that make this procedure work are:

1. Codewords that are pairwise orthogonal;

2. Codewords that are infinitely long;

I The Channel Coding Theorem was fiat proved for a Binary Symmetric ChanneL. It
ha. been extended to more general channels.
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3. Explicitly known matched filters for detecting the codewords.

" Orthogonality is used by the matched filter detectors to distinguish
the different codewords from each other and from channel noise, with
which (under suitable assumptions about the channel noise statistics)
the codewords have small or vanishing correlations.

" Infinite length codewords are employed to spread the information rep-
resented by the encoded bit throughout the entire signal, thereby cre-
ating a kind of "hologram" whose smallest parts contain information
about every part. This "de-localization" of the information makes
the codeword resistant to localized noise effects and, in the limit, to
arbitrary noise effects.

That the codewords are random waveforms is not essential; random-
ness, combined with infinite duration, simply guarantees orthogonality and
delocalization.

The matched filters can be statistical or deterministic; deterministic
filters are better in combination with soft decision detection procedures.

It appears that in the limit of arbitrarily long waveforms, wavelet chan-
nel coding realizes the upper bound for information transmission given by
Shannon's Channel Coding Theorem. That is, wavelet channel encoded in-
formation can be transmitted at a rate that is as close as one pleases to
channel capacity with aribitrarily small bit error rates. From a practical
standpoint, the significance of this statement is that wavelet channel en-
coding provides a constructive and practical solution to design of efficient
codes. Moreover, a wavelet channel codec can be efficiently implemented
in VLSI technology.

7.2 Wavelet Channel Coding

The user of a digital communication system will primarily be concerned
with the bit rate and the error rate of the communications channel. 2 The
channel is controlled by allocating power and bandwidth, both of which are
precious resources.

Every communications channel experiences noise. Additive white Gaus-
sian noise (abbreviated "AWGN") is often a good first approximation be-
cause it results from thermal effects, which are always present. Other types
of noise are important in specific applications. The communications system
designer would like to achieve the objectives of high bit rate and low error

2 The bit rate is the mesage throughput in bits per second. The eror rate is the

fraction d input menage bits that are in on-r at the receiver.



176 An Essay on Wavelet Technology Aware, Inc. AD921018

rate with a minimum of power consumption and bandwidth requirements.
These objectives are inconsistent; trade-offs must be made that prefer high
bit rate to low error rate or low error rate to high bit rate; low power re-
quirements to low bandwidth or low bandwidth to low power requirements.
These trade-offs determine the type of modulation and error correction that
will be selected.

Wavelet channel coding ("WCC") provides a systematic conceptual and
design method for making these trade-offs through software selection within
a common chipset-based hardware framework.

The advantages of wavelet channel coding result from the combination
of the exact orthogonality of wavelet codewords, the sp reading of message
symbol information throughout the overlapped codeword symbols, and the
ability to utilize soft decisions to decode wavelet channel coded symbols.

The main properties of WCC coding are summarized in the following
list:

1. Wavelet Channel Coding is a new class of channel coding algorithms.

2. WCC offers a systematic and simple approach to the full range of
coding problems, from low rate, power efficient codes to high rate,
bandwidth efficient codes.

3. Wavelet Channel Coding can be applied in a block coding mode or in
a trellis coding mode.

4. WCC codewords are strictly orthogonal.

5. WCC codewords have small correlations for non-codeword offsets.

6. WCC coding employs robust soft decision decoding.

7. WCC codes can be arbitrarily long.

8. WCC codewords have desirable Hamming distance properties and
provide good error correction capability.

9. WCC codes can be efficiently coded and decoded with simple VLSI
circuits.

10. Synchronization can be performed by correlation matching.

Analysis and computer simulations show that WCC with arbitrary length
wavelets achieves the AWGN performance of coherent binary phase shift
keying (uBPSK"). When compared under a constant channel rate criterion,
WCC provides coding gains of approximately 10 log12 (mg+ )dB. On pulsed
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interference and flat fading channels WCC outperforms BPSK with gains
that are dependent of the wavelet sequence length.

Figures 7-2 through ?? display the performance improvements of wavelet
channel coding in three environments:

1. An AWGN channel with 5% burst noise compared with Pulse Ampli-

tude Modulation ("PAM").

2. An AWGN fading channel, compared with PAM.

3. A fiat Rayleigh channel, compared with BPSK.

7.2.1 Modulation

There are three basic types of modulation. Each one corresponds to mod-
ulation of one of three parameters: amplitude A, frequency w, and phase
0. To clarify this, suppose that the digital communication channel employs
plane electromagnetic waves as the transmission medium. The modulator
in a digital communications system maps the symbols that are to be trans-
mitted to the amplitude, phase or frequency of the carrier. The modulator

* output can be represented as

s(t) := Re (u(t)e 2 1,fc) (7-1)

This is a bandpass signal in which f, represents carrier frequency and u(t)
the equivalent low pass message bearing waveform.

The form of u(t) is dictated by the form of the modulation used. We
distinguish:

1. Amplitude Shift Keying: more commonly called PAM (Pulse Am-
plitude Modulation). This is the modulation method in which the
message symbols yn are mapped to a discrete set of amplitudes so
that

00

u(t) :- E y.g(t - nT) (7-2)
n=O

2. Frequency Shift Keying: (FSK) in which the symbols V. are mapped
to a discrete set of frequencies so that

u(t) :E E eJ2 'V'g(t - nT) (7-3)
n=O
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3. Phase Shift Keying: (PSK) in which the yns are mapped to a discrete
set of phases so that

00

U(t) E ejy-g(t - nT) (7-4)

In all of the above, the message symbol rate is assumed to be I/T and
g(t) is assumed to be a pulse (square or other) of duration T.

In the remainder of this chapter, we examine the implications of using
each of these modulation techniques for the transmission of WC encoded
symbols. We limit our discussion to multiplier 2, flat WCM with maximal
overlap trellis WCC. Extending the discussion to higher multiplier systems
and arbitrary overlap signalling is straightforward.
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Figure 7-2: Wavelet channel coding performance in a channel with 5% burst
noise.
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Figure 7-3: Wavelet channel coding performance in fading channels.
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Figure 7-4: Wavelet channel coding performance in flat Rayleigh channels.

0 5 0 5 20 25

7.3 The Wavelet Channel Coding Algorithm

7.3.1 The Basic Idea: Trellis WC Message Coding for
m--2

For the purpose of illustration, let a message

Zi, Z2 •••, n .

consist of a sequence of bits represented by the signed units {+1,-1), and
let

( ao-.., a21-
b0,. ... 9b2 j 1. 1

be a rank 2 wavelet matrix of genus g. Because the rows of multiplier 2
WCM's are mutually orthogonal when translated by steps of two, we can
take advantage of the orthogonality of the a's and b's to code at L rate
of two message bits per 2 k clock pulses, where I < k < log 2 2g. Message
bits with odd sequence number will be coded using the WCM waveform

C
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(ao,... ,a2 _1) and message bits with even sequence number will be coded
using the WCM waveform (bo,... ,962,•-1).

The coding procedure is illustrated in Table 7.1 for a system with maxi-
mally overlapped wavelet sequences. This corresponds to the case where the
code rate is one information bit per WCC symbol (i.e. k = 1 above). The
sequence of clock pulses is arranged above the upper rule of the table, and
the sequence of transmitted symbols %. is shown below the lower rule of the
table. The encoding of each message bit z, is shown in the nth row below
the upper rule. The output code symbol for odd n the encoding begins on
the nth clock pulse and that for even n the encoding begins on the (n - l)th
clock pulse. y,, is equal to the sum of the nth column of encoded message
bit values and is therefore not restricted to the values ±1. The formula for
computing the symbol yn to be transmitted at the nth clock pulse is

Y= {Z2k+1aa.-2k-1 + Z2k+2bn-2k-I) (7-5)
k

Some observations are in order:

1. It is evident that code rates as small as I/g can be achieved by varying
the overlap of the wavelet sequences; in the limit where the code rate
is 1/g, the wavelet sequences are non overlapped but adjacent.

2. When fiat WCM are used, the WC encoded symbols that are gen-
erated by the trellis WCC algorithm are binomially distributed. We
will discuss this in more detail in section 7.3.5 below.

7.3.2 Recovery of a Trellis WC Coded Message for m -

2

The sequence of message bits z,, can be recovered from the transmitted
symbol sequence by a matched filter which uses the orthogonality of the
WCM waveform sequences. For the illustrative implementation of waveform
symbol generation described in the previous subsection, the message bit
z= = +1 is identified with the sign of the output of a filter matched to the
WCM waveform with input the received symbol sequence. To show this,
suppose that the receiver has received the symbols

y1,Y2, ... ,Yn, ....

We will calculate the correlation of this symbol sequence with the WCM
vectors (ao,... ,a2#-0) and (b4,... ,b 2t-.).

First, consider the output of the filter matched to (a0 ,... ,a 2,_1), i.e.
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-an..-21.lYn (7-6)
n

where I is an arbitrary integer. Equation (7-5) implies

_ n-2- = 1. an.•,2i-,Z odd {Z,- ., + zf÷+bn._)

= odd 1-, E an-2,-n..-q+ (7-7)

= 2T21+1,

where we have used the orthogonality of the WCM sequences to obtain the
last line. A similar argument yields the formula for correlation with the
sequence (bO, ... , b2g_ 1 ), which decodes the bits zx2 corresponding to even
clock pulses.

More sophisticated WC coding and decoding techniques have been de-
veloped by Aware and are currently under investigation.

7.3.3 The Simplest Case: Block WC Message Coding
with m = 2

0Suppose that the message is periodic with period 2g equal to the length
of the wavelet sequences employed by a trellis coder. In this case WCC
performs the function of a block encoder, which we describe in this section.

If the message is the row vector

z := (z0,... ,Z2,-1) (7-8)

where zi E { 1, -1), then the coded message is the codeword row vector

Y := (YO,...--, ,-1) (7-9)

where

y = zU (7-10)

and

U := (Ui), (7-11)

Uj,2k -- 'a(j+2k)mod2f; (7-12)

(73Uj,2k+1 := bU+2k)mod2# (7-13)

@V
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Theorem. U is a unitary matrix.
In the absence of noise, the decoding algorithm is simply

Z = yU- 1 = (7-14)

When a flat WCM is used for block coding, constant power encoded symbols
are generated. This is not the case for trellis WCC, even when flat wavelet
matrices are utilized.

7.3.4 Code Rate and Channel Rate for Arbitrary Over-
lap Signalling

We discussed in section 7.3.1 the ability to alter the code rate of the wavelet
channel code by changing the amount by which the WCM waveforms over-
lap. In general we see that arbitrary overlap signalling is capable of pro-
ducing variable rate codes. A mazimally overlapped signalling technique
produces a code rate of 1 (i.e. 1 information bit per codeword symbol);
anything less than this will produce a lower rate code. A code with code
rate equal 1 does not compromise information throughput; one information
bit is transmitted per codeword symbol.

In addition to the code rate, it is informative to define the channel rate
as the number of channel bits transmitted per clock pulse. In the maxi-
mally overlapped signalling case, this is identical to the channel rate. This
relates to the modulation scheme that is necessary to transmit the encoded
symbols. The channel rate for maximally overlapped wavelet sequences is
given by the formula

1
R = log (g+1) (7-15)

By varying the overlap of the WCM waveforms, it is possible to obtain
WC codes whose channel rate is arbitrary. This occurs because the num-
ber of values in the WCC symbol distribution decreases as the amount of
overlap decreases. Another way to alter the channel rate is by limiting the
modulation scheme to a number of levels less than the number of WCC
symbols. This is essentially equivalent to performing range truncation on
the WCC symbols. For example, a maximally overlapped trellis WCC us-
ing multiplier 2, length 8 flat real WCM will produce WCC symbols with
possible values

-8, -6, -4, -2,0,2,4,6,8 (7-16)

The channel rate of this code is log2 9. It would require a 9-ary modula-
tion scheme for transmission. By truncating the values *8 from the range
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of WCC symbols, a 7-ary modulation scheme could be used reducing the
channel rate to log2 7. Ultimately, the channel rate will approach one as the
number of WCC symbol values is reduced to two. The redundancy inherent
in WC coding suggests that altering the channel rate by range truncation
may be beneficial and our simulations of WCC Phase Shift Keying ("PSK")
bear this out.

7.3.5 Distribution of WCC Symbols

Monograph Distribution

WCC codeword symbols are not equiprobable. Indeed,

Theorem. Let [a] be a m x mg flat real WCM. The mg + 1 codeword
symbols for WCC share the common denominator mi where J and g are
related by the equation

m V = g, (7-17)

and their numerators are

-mg,. ., -2k,..., 0,..., 2k,..., rmg. (7-18)

These codeword symbols are binomially distributed according to the dis-
crete probability density function (the notation for the probability displays
only the numerator)

Prob (ym = 2k - mg) = (0: 2k < mg (7-19)

where it is assumed that the message bits -1-1 have equal probability.

Theorem. The average value of the variance of a codeword symbol y is

<p2>= (2k-mg)2  mg (0.5) = mag. (7-20)

proof is by

0
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7.4 Wavelet Channel Coding and Digital Mod-
ulation Techniques

7.4.1 Wavelet Channel Coding and M-ary Pulse Am-
plitude Modulation

When using a multiplier m = 2, fiat real wavelet matrix of order gm in a
maximal overlap trellis WCC, the encoded symbols take on the values

-mg,...,-2k,... 90,... 12k,. .. , mg. (7-21)

M must equal gm + I for there to be a one-to-one mapping between the
WC encoded symbols and the signals in the M-PAM constellation. As the
length of the wavelet sequences increases, so does the average energy of the
transmitted M-PAM signal. We see, therefore, that an increase in wavelet
sequence length requires an increase in average transmitted symbol energy.
However, for a fixed message rate, no bandwidth expansion is required to
transmit WC codeword symbols using PAM.

7.4.2 Wavelet Channel Coding and M-ary Phase Shift
Keying

Multiphase signaling is another means of transmitting digital data. The
wavelet symbols are mapped to phases on the unit circle. At the demodu-
lator it will be necessary to map the received signal phase back to the range
of the codeword symbol distribution before processing by the matched fil-
ter wavelet decoder. A phase detector is therefore used to produce the soft
decisions that are passed to the WC trellis decoder.

It is interesting to observe the distribution of WCC symbols when they
are normalized to lie on a compact interval as gm --. oo. The normalized
WCC symbols cluster near zero as 9m increases. A similar clustering be-
havior would obviously be observed on the unit circle, as seen by mapping
the codeword symbols to the interval [-w, w] and wrapping this interval
around the unit circle.

The issue of optimally placing the codeword symbols around the unit
circle is not a trivial one. We have shown that it is optimal to place the
codeword symbols so that the distance between signal constellation points
is proportional to the probability of symbol occurrence, i.e. a symbol that
occurs frequently is placed further from its adjacent constellation points
than a symbol that does not. The unit circle, however presents an additional
problem. Wrap-around places the largest negative value adjacent to the
largest positive value in the signal constellation. This is undesirable because
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in the presence of noise, a sign reversal of the codeword symbol value is
possible with catastrophic implications at the trellis decoder. Aware has
found the following rules of thumb to be successful:

1. truncate the range of transmitted codeword symbols to those that
occur on the order of 95% of the time.

2. map these to the unit circle so that approximately two thirds of the
entire circle is used (thus keeping the most negative and most positive
codeword symbols at a distance of approximately 2f .) Ideally the op-
timum distance between these"end" values (i.e. the most positive and
most negative codeword symbols) can be related to the signal to noise
ratio (SNR.) at which the communications system is operating. If for
instance, the SNR is known in an additive white Gaussian channel,
the end values can be placed on the unit circle to obey an apriori
determined probability of sign reversal.

When M-PSK is used to transmit WCC symbols, an increase in the
wavelet sequence length causes a decrease in the distance between adjacent
signals in the constellation. No increase in symbol energy is incurred as the
length of the wavelet sequences increases. Also, at a constant message rate,
the code rate 1 trellis WCC requires no bandwidth expansion regardless of
the wavelet sequence length. In the limit, as the wavelet sequence length
goes to infinity, the WCC symbols map to the entire unit circle (assum-
ing no range truncation is used.) This, in a sense, is equivalent to using
analog phase modulation for digital data transmission and is an interesting
prospect Aware is currently evaluating.

7.4.3 Wavelet Channel Coding and M-ary Frequency
Shift Keying

The form of the message bearing low pass equivalent signal is given in eq.
(7-3). The criteria for selecting the frequency separation between adjacent
frequencies in the signal constellation are identical to those used in standard
FSK modulation. At the receiver, the output from a set of gm+ 1 bandpass
filters (each tuned to an appropriate frequency) can be used to obtain a soft
decision on the WCC symbol. Other, more sophisticated demodulation
schemes are possible.

When FSK is used for the transmission of WCC symbols and a constant
message rate is assumed, an increase in bandwidth is required for each
increase in wavelet sequence length. The average energy of the transmitted
wavelet symbol does not, however, increase with sequence length; it is given
by the energy of the pulse g(t).
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7.5 Performance of Wavelet Channel Cod-
ing

7.5.1 Introduction
The performance of the multiplier 2 WCC algorithm presented in section
7.3.1 for a number of wavelet sequence lengths, and in communications
channel environments including additive white Gaussian noise, pulsed in-
terference and Rayleigh fading. The performance was compared with clas-
sical digital communications techniques for a constant code rlte constraint
as well as a constant channel rate constraint.

7.5.2 Performance of WCC in Additive White Gaus-
sian Noise

In this section we discuss the theoretical performance of maximal over-
lap trellis WC coding when used in conjunction with M-PAM (heretofore
denoted as WCC-PAM) in the presence of additive white Gaussian noise
(AWGN).

Wavelet channel coding maps information bits into coded symbols that
are (mg + l)-ary for an order mg WCM. The probability density function
is binomial, and the average value of a codeword symbol y2 is given by
eq(7-20). For PAM the amplitudes of the equivalent low-pass waveforms
are the symbols yi. The energy of this waveform is proportional to y•, so
the average signal energy is proportional to the average value of yi, i.e. mg;
cp. eq(7-20).

If we let zx = IN + n, be a noise-corrupted symbol, then yj represents
the signal component (i.e. a WCC symbol) and ni a realization of mean 0,
variance No/2 AWGN. We also let Si and R, represent the signal and noise
components at the output of the wavelet matched filter, respectively.

The AWGN noise term in the R, term has mean value zero and variance
Var = mgp-. (7-22)

2
It follows (using notation similar to that in section 7.3.2 ) that the proba-
bility of a bit error is (cp. [61])

1 {Prob (Rv*+i + S21+1 > 0 1 = -1)

+Prob (R•i+i + S21+i < 0 1 z2+i = +1 ))

=-• {Prob (R21+1 > N 1 Z2+= -1)

+Prob (R2i+l > N I t21 = +1)). (7-23)

S
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Since the noise term R21+1 is independent of z21+1, this can be written as

Pb = Prob (R 2 , > N) = Q ( Q (v g (7-24)

where

Q/.o e_,,212dy. (7-25)

Performance Results with Rate 1 WC Codes

Since rate I WC codes maintain the original bit rate, a comparison with
classical binary modulation techniques (BPSK, BFSK, etc.) is appropriate.
Let Eb represent the energy transmitted over the channel per message bit.

It can be shown that WCC-PAM in AWGN achieves the bit error
rate (BER) performance of coherent BPSK for arbitrary lengik wavelet
sequences, and WCC outperforms coherent BPSK in channel environments
other than AWGN. This is due to the property of WCC to spread mes-
sage bit information throughout the codeword symbols. As a result of this
spreading, we see improvements in performance with increased wavelet se-
quence lengths in pulsed interference and fading channels.

Performance Results with Constant Channel Rate

We now compare WCC-PAM to uncoded PAM under a constant channel
rate criterion. In order to maintain the message bit rate and since log2(mg+
1) bits are transmitted per WCC codeword symbol, it is necessary to assume
that a bandwidth expansion factor of log2(mg + 1) is allowable on the
channel without significant intersymbol interference.

Let E, be the energy per channel bit. The BER performance is ex-
pressed in terms of E, as

2EcloE,( g+ 1)) (7-26)

The simulated performance of WCC-PAM was compared to 9-PAM and
33-PAM. used for coded and uncoded PAM. As seen from the simulation
curves, mg-WCC achieves gains of approximately 101og02(mg + 1)dB over
(mg+ I)-ary PAM. Note that these curves are plotted in terms of channel bit
SNR: E,/No. For PAM this is equivalent to information bit SNR Eb/No.
For WCC-PAM E/No is equivalent to Eb/No only with the bandwidth
expansion assumption given above.
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7.5.3 Performance on Pulsed Interference Channels

The pulsed interference (also called burst noise) channel is an AWGN chan-
nel that is occasionally corrupted by large bursts of noise or interference
(either intentional or unintentional). The inherent property of WC codes
to spread a message bit over a length mg WC codeword suggests that the
use of WCC in burst noise channels would be beneficial. Indeed, as we
show in this section, the effects of pulsed interference are ameliorated by
using WCC, with performance improvements that increase with increasing
wavelet sequence length.

Performance Results

The performance of WCC-PAM in pulsed interference was derived using
computer simulation. It is assumed that the noise bursts occur randomly
and are of duration no longer than that of a symbol. If an interleaver with
length at least that of the burst is used, the results apply to longer duration
bursts as well. Symbols affected by pulsed interference are simply blanked
out at the receiver causing a symbol erasure. The justification for this is
that all information in the amplitude of the PAM signal has been destroyed
by the pulsed interference, hence setting the affected symbol to zero (the
value of the most probable codeword symbol) is a reasonable choice.

It is apparent that WCC provides significant gains over uncoded BPSK
in the presence of pulsed interference and that these gains grow with in-
creases in the wavelet sequence length.
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Table 7 1 F -ample of Wavelet Channel Coding

1 2 4 ... 2g 29+1 2g+ 2 ...
zi ao ziai Xa2 zia3 ... zia2g-l ... ... .

z 2 bo ZA Z2b2 Z2bs ... z2b2g-I ... ... ...

Z3G0 Z3Gi ... Z302g9-3 Z3G29-2 Z3a2g1- ...

z0bo z4bi ..:-4;2:-3 Z4b62-2 X:b6-2 ...

YI Y2 Y3 Y4 ... Y2# ft9+1 Yr2#+2 ...



192 An Essay on Wavelet Technology Aware, Inc. AD921018



Chapter 8

Numerical Solution of
Partial Differential
Equations

0 8.1 Understanding PDE

The motion and interaction of physical things on the scale of human beings
is described by Newton's laws, which mediate between the submicroscopic
world, governed by quantum mechanics, and gravity, governed by general
relativity. For the most part, these laws and relationships are expressed
in terms of relations between physical quantities, such as force and enevyy,
and the rate at which they change with time and distance. The equations
that express the relations between a quantity and its rate of change are
differential equations.

The differential equations that govern the diffusion of heat through-
out an object (the "diffusion equation"), the propagation of electrical cur-
rents and radio waves ("Maxwell's equations"), the propagation of of sound
waves (the "wave equation"), the structural behavior of of materials (the
"continuum mechanics equation"), and the flow of viscous fluids, ranging
from air to water and honey (the "Navier-Stokes equations") are the basic
equations that govern the phenomena of daily life. Engineers who design
complex products usually use numerical solutions of one or more differential
equations as a tool.

The solutions of differential equations also relate the values of param-
eters that can be controlled by the user to the behavior of a process or

193
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system, just as a driver rotates the steering wheel to control a car's direc-
tion.

It is usually difficult to calculate numerical solutions for differential
equations in real time; in some cases, because of the large amount of calcu-
lation that would be needed or because the equation describes a transient
or nonlinear phenomenon like a shock wave and is sensitive to numerical
errors due to round-off or discretization of the space and time variables, it is
impossible. For these reasons, real-time process control has not been prac-
tical for most processes. Recent advances in microcomputer performance
and in wavelet mathematics create the possibility of broadly applying the
numerical solution of differential equations to real-time control problems.

8.2 Wavelet numerical solutions for differ-
ential equations

Aware has developed numerical methods for solving nonlinear partial differ-
ential equations using wavelet functions. The relevant properties of wavelets
are that they are compactly supported, orthogonal and define bases for
Sobolev spaces. Being both compactly supported and orthogonal, wavelets
combine the advantages of finite element, spline, and Fourier spectral meth-
ods that have been traditionally used to find numerical solutions. To test
the feasibility of the wavelet methods we have studied nonlinear phenomena
that exhibit singular behavior. These include shocks (e.g. Burgers equa-
tion, the Gas dynarmics/compressible Navier Stokes equations) and turbu-
lence (incompressible Navier Stokes). For shocks we found some remark-
able results. The Galerkin method based on wavelets (the Wavelet-Galerkin
method) accurately captured shocks for large Reynolds number and stably
described their interactions. The solutions decayed to the correct limit for
large times. In comparison, the spectral and finite difference solutions were
unstable and inaccurate. The stability of the Wavelet-Galerkin method ex-
tended to infinite Reynolds number and by a simple modification of the
cutoff boundary condition accurately captured shocks in the inviscid limit
[30], [27]. For turbulence we ran simulations of the two dimensional Euler
flow and examined the phenomena related to vortex merger, filamentation,
the gradients of vorticity and the long time limit. Our initial results show
that the Wavelet-Galerkin method is as accurate as the fully-dealiased spec-
tral method, is far more stable, and, for each time step, (depending on the
specific wavelet basis, algorithm and state of optimization), can be faster
than the spectral method [68]. It seems that the wavelet discretization al-
lows the implementation of numerical schemes for Euler flow that are useful
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for long time studies and that cannot be implemented by spectral or finite
difference methods. The basic numerical lesson is that scaling function ex-
pansions subdue the Gibbs's phenomenon, allow the stable calculation with
oscillatory approximations that occur in inviscid calculations, and allow the
efficient, iterative implementation of implicit time differencing methods.

Compact-support and the ability of scaling functions to exactly approx-
imate features smoother than themselves, and hence to be able to better
approximate discontinuous features, is essential. The orthogonality of the
translated scaling function basis also guarantees the conservative approxi-
mation of the quadratic integrals (energy and enstrophy) by the Galerkin
approximation to the Jacobian nonlinearity. The implicit time differencing
with the Wavelet-Galerkin space discretization allows the control of, i.e.
conserves, or monotonically increases or decreases, the energy and/or en-
strophy. It seems clear that wavelet based numerical methods for turbulence
simulations hold considerable promise and warrant further development.

We have also developed a wavelet-based method for the solution of
boundary value problems in arbitrary geometries. This Wavelet-Capacitance
Method is defined by a nontrivial extension of the classical Capacitance
Matrix, and, unlike the classical method, it can be spectrally accurate [43].
We use compactly supported wavelets as a Galerkin basis and develop a
Wavelet-Capacitance Matrix method to handle boundary geometry. For
several geometries we have made a detailed comparison of methods, ex-
amining accuracy and rates of convergence. Specifically, we compared the
Wavelet-Galerkin method to standard methods for the numerical solution
of the Biharmonic Helmholtz equation and the Reduced Wave equation
in nonseparable, two-dimensional geometries. We have used the Wavelet-
Capacitance method to numerically resolve the long term limit of two-
dimensional Euler and Navier-Stokes flows in rectangular and L-shaped
domains. This has considerable relevance to the qualitative behavior of
two-dimensional turbulence [70], [68], [69] and to practical applications of
the method to problems in engineering. We have developed least-squares
versions of our algorithm for the Helmholtz equation in nonseparable ge-
ometries and examined the accuracy and convergence of these methods.

We have also used the Hilbert transform of the compactly supported
wavelets to define an extended basis for the exterior Acoustic Helmholtz
problem. Surprisingly, the Hilbert transform of a compact wavelet is a
noncompact wavelet verifying the same basic equation. The noncompact
form can be used to match the Sommerfeld radiation condition. In sum-
mary,

* The Wavelet-Capacitance Matrix Method is stable and spectrally ac-
curate. These results apply to general nonseparable domains and all
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ranges of the parameters.

"* The Wavelet algorithm is found to obtain accurate results for prob-
lems where, for instance, finite difference methods do not converge,
or converge slowly, and where Fourier Spectral methods do not apply.

"* For a fixed level of discretization, increasing the order of the wavelet
basis spectrally decreases the error.

"* The rates of convergence in sup norm appear to depend on the wavelet
basis, DN, and discretization, 6z, as (bz)N-5.

"* The rates of convergence in sup norm appear to be independent of
the domain shape.

"* Least-squares versions of the wavelet algorithm can preserve accu-
racy and decrease the computation by more than a factor of four.
The finite difference algorithms would not allow effective least-square
implementations.

"• All errors (accuracy and convergence) are measured in the pointwise
sup norm.

"* Our implementation is fast, since it is based on fast (FFT) evaluations
for periodic geometry adapted to nonseparable geometry.

"* The basic algorithm applies to one, two and three space dimensions,
without essential modification.

" The Wavelet-Galerkin method preserves symmetries of the domain
and defines a type of discrete orthogonality that is very useful for
further applications of the method. These applications include fast
Domain Decomposition techniques.

" We have found a wavelet basis with prescribed rate of decay at infin-
ity. This is based on the Hilbert Transform of compactly supported
wavelets and will allow the fast direct solution of the exterior acoustic
problem.

"* To our k - "'- age, our algorithm is an unique extension of the classi-
cal Capacitance-Matrix method and should have several and diverse
applications to problems requiring a higher order accuracy.

of the orthogonal spaces is useful in the numerical solution of nonlinear
systems.
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We have found that the Hilbert Transform of a scaling function is a
scaling function with a prescribed rate of decay at infinity. Translates of
this scaling function define a basis on the real line that is useful for the
numerical solution of exterior boundary value problems. For instance, this
would allow a direct solution of the acoustic radiation problem.

8.3 Summary of Current Results

8.3.1 Advantages of wavelets for the numerical Solu-
tion of PDE.

" ranslatesform orthogonal basis. Quadratic invariants, including en-
ergy and enstrophy, are preserved.

" Locally exact representation of polynomials by 1, &.slates of the scal-
ing function.

" Compact support of basis elements. Localization of gradients and
stability of numerical methods. Attenuation of Gibb's Phenomena.
Efficient parallel implementations.

" The degree of approximation of basis elements is greater than their
degree of smoothness. Good approximation of smooth functions. At-
tenuation of Gibb's Phenomena at discontinuities.

" Multiresolution of scales. Connections with multigrid and adaptive
methods.

"* Fast evaluation of basis elements by use of the scaling relation.

"* Exact evaluation of wavelet functionals by algebraic methods. Exact
evaluation of functionals required in the Galerkin method.

8.3.2 Principal Results

" Development of Wavelet-Galerkin method. Exact evaluation of Con-
nection Coefficients. Shock Capture and Turbulence Closure.

" Development of wavelet methods for PDE boundary problems by an
extension of the Capacitance Matrix method. Comparison with stan-
dard finite difference methods. Spectral convergence of the wavelet
methods.

"* Long time limit of 2D-Euler and Navier-Stokes flows with geometry.
Implications for Two-Dimensional Turbulence.
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8.4 A One Dimensional Example: Burgers
Equation

Burgers equation is an idealized mathematical representation for the devel-
opment of a "breaker" as an ocean wave feels the bottom when it reaches
a shallow beach. The bottom of the wave is retarded and the slope of the
wavefront increases until it is nearly vertical. Then the wave breaks and
crashes on the beach.

Aware developed the Wavelet-Galerkin method to solve this kind of
problem. The results have been reported in several papers (cp. [27], [32],
[66]) to which the reader is referred for the details.

Burgers equation is perhaps the simplest example of a non linear partial
differential equation. The equation is

Ut + UUX = Ouxt,

where a is the viscosity. When the viscosity is null, the field will develop
a shock in a time t* = min{1/u.(z,O)). The nonlinearity is the quadratic
term, uu., which causes small irregularities in u(z, t) to grow as time passes.
Ultimately, the gradient of u becomes too large to be accurately estimated
by a difference quotient on a grid of fixed size, and the numerical solution
becomes unstable and "crashes on the beach" too. Conventional numerical
methods for solving this equation are unable to cope with the consequences
of the instability of the numerical derivative. Wavelet methods, based on
the use of connection coefflicents to estimate derivatives, is much less sen-
sitive to the grid size and tempers the instability. The result is an accurate
solution without requiring fine grids or increased computational cost.

An example will help to demonstrate the power of the Wavelet-Galerkin
method. For the sake of simplicity of description we will consider the Burg-
ers' equation evolution of a one dismensional periodic wave; this is the same
thing as considering a wave that travels around a circle. This assumption
separates the problem of the general numerical stability and accuracy of the
method from questions that concern the treatment of boundary conditions.1

'Aware and its associates at Rice Univeruity have developed powerul and efient
general methods for employing wavelets with botmdary conditions. Cp. [66], (71], [43].
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Figure 8-1: Initial condition for the solution of Burgers equation.
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Suppose that at time t = 0 the initial waveform is the sinusoid

u(z,o) = -sin(2rz/64)

suitably normalized, and that a grid of 64 points per unit interval is em-
ployed in the space domain; the initial function is shown in figure 8-1.

Figure 8-2 illustrates the evolution of the solution employing the stan-
dard de-aliased spectral method on the 64 point grid. In the figure the time
axis runs from the upper right to the lower left, so that the solution for the
final time step is the leftmost cross section of the surface, and the initial si-
nusoid is the rightmost cross section. The vertical scale measures the wave
amplitude u(z, t). A total of 450 equispaced time steps are represented.

The figure shows that relatively soon a nearly vertical shock wave de-
velops. Since the equation contains a diffusive term, ther peak value of the
shock decays as time passes. Then, as the figure illustrates, the shock give
birth to an oscillation. The shock amplitude increase and the frequency
oscillation rapidly grows in amplitude and propagates throughout the so-
lution. The source of the oscillation is numerical error: error in estimating
the gradient, and round-off error in the calculations. The final time slice
shows an completely unreliable numerical solution.

Although the errors dominate the solution, their local space average
appears to be less sensitive to these errors. Figure 8-3 shows the result of
applying a 3-point average to the numerical solution at each time step. This
simple average provides a generally accurate picture of the solution, but it
is neither qunatitatively correct nor is it accurate in the qualitative details
- the shock front begins to grow again as time evolves. These problems
are typical when the de-aliased spectral method is applied to non linear
problems that describe transient, localized phenomena that have rapidly
varying gradients.

The Wavelet-Galerkin method avoids these difficulties. The local sup-
port of the wavelet basis functions reduces or eliminates propagation of er-
rors to distant regions, and the high accuracy of the connection coefficient
derivative estimates (cp.[28], [36]) reduces the error in gradient estimates.
When combined, these features lead - for a preset level of accuracy - to
lower computational cost because the can employ a coarser grid.

Figure 8-4 displays the wavelet numerical solution of the same prob-
lem using the Daubeclies wavelet basis D3. The solution has not been
smoothed. Figure 8-4 shows the same solution with 3-point smoothing.
This provides a small incremental improvement in the accuracy of the so-
lution.
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Figure 8-2: Evolution of the numerical solution of Burgers equation em-
ploying unsmoothed de-aliased spectral method.
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Figure 8-3: Evolution of the numerical solution of Burgers equation em-
ploying smoothed de-aliased spectral method.
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Figure 8-4: Evolution of the numerical solution of Burgers equation em-
ploying unsmoothed Wavelet-Galerkin method.
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Figure 8-5: Evolution of the numerical solution of Burgers equation em-
ploying smoothed Wavelet,-Galerkin method.
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